1,406 research outputs found

    Cooperative Adaptive Control for Cloud-Based Robotics

    Full text link
    This paper studies collaboration through the cloud in the context of cooperative adaptive control for robot manipulators. We first consider the case of multiple robots manipulating a common object through synchronous centralized update laws to identify unknown inertial parameters. Through this development, we introduce a notion of Collective Sufficient Richness, wherein parameter convergence can be enabled through teamwork in the group. The introduction of this property and the analysis of stable adaptive controllers that benefit from it constitute the main new contributions of this work. Building on this original example, we then consider decentralized update laws, time-varying network topologies, and the influence of communication delays on this process. Perhaps surprisingly, these nonidealized networked conditions inherit the same benefits of convergence being determined through collective effects for the group. Simple simulations of a planar manipulator identifying an unknown load are provided to illustrate the central idea and benefits of Collective Sufficient Richness.Comment: ICRA 201

    Nonlinear Control and Synchronization with Time Delays of Multiagent Robotic Systems

    Get PDF
    We investigate the cooperative control and global asymptotic synchronization Lagrangian system groups, such as industrial robots. The proposed control approach works to accomplish multirobot systems synchronization under an undirected connected communication topology. The control strategy is to synchronize each robot in position and velocity to others robots in the network with respect to the common desired trajectory. The cooperative robot network only requires local neighbor-to-neighbor information exchange between manipulators and does not assume the existence of an explicit leader in the team. It is assumed that network robots have the same number of joints and equivalent joint work spaces. A combination of the lyapunov-based technique and the cross-coupling method has been used to establish the multirobot system asymptotic stability. The developed control combines trajectory tracking and coordination algorithms. To address the time-delay problem in the cooperative network communication, the suggested synchronization control law is shown to synchronize multiple robots as well as to track given trajectory, taking into account the presence of the time delay. To this end, Krasovskii functional method has been used to deal with the delay-dependent stability problem

    Second-Order Consensus of Networked Mechanical Systems With Communication Delays

    Full text link
    In this paper, we consider the second-order consensus problem for networked mechanical systems subjected to nonuniform communication delays, and the mechanical systems are assumed to interact on a general directed topology. We propose an adaptive controller plus a distributed velocity observer to realize the objective of second-order consensus. It is shown that both the positions and velocities of the mechanical agents synchronize, and furthermore, the velocities of the mechanical agents converge to the scaled weighted average value of their initial ones. We further demonstrate that the proposed second-order consensus scheme can be used to solve the leader-follower synchronization problem with a constant-velocity leader and under constant communication delays. Simulation results are provided to illustrate the performance of the proposed adaptive controllers.Comment: 16 pages, 5 figures, submitted to IEEE Transactions on Automatic Contro

    Bio-Inspired Adaptive Cooperative Control of Heterogeneous Robotic Networks

    Get PDF
    We introduce a new adaptive cooperative control strategy for robotic networks comprised of heterogeneous members. The proposed feedback synchronization exploits an active parameter adaptation strategy as opposed to adaptive parameter estimation of adaptive control theory. Multiple heterogeneous robots or vehicles can coordinate their motions by parameter adaptation analogous to bio-genetic mutation and adaptation. In contrast with fixed gains used by consensus theory, both the tracking control and diffusive coupling gains are automatically computed based on the adaptation law, the synchronization errors, and the tracking errors of heterogeneous robots. The optimality of the proposed adaptive cooperative control is studied via inverse optimal control theory. The proposed adaptive cooperative control can be applied to any network structure. The stability proof, by using a relatively new nonlinear stability tool, contraction theory, shows globally asymptotically synchronized motion of a heterogeneous robotic network. This adaptive cooperative control can be widely applied to cooperative control of unmanned aerial vehicles (UAVs), formation flying spacecraft, and multi-robot systems. Results of the simulation show the effectiveness of the proposed adaptive cooperative control laws especially for a network comprised of heterogeneous members
    • …
    corecore