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We investigate the cooperative control and global asymptotic synchronization Lagrangian system groups, such as industrial
robots. The proposed control approach works to accomplish multirobot systems synchronization under an undirected connected
communication topology. The control strategy is to synchronize each robot in position and velocity to others robots in the
network with respect to the common desired trajectory. The cooperative robot network only requires local neighbor-to-neighbor
information exchange between manipulators and does not assume the existence of an explicit leader in the team. It is assumed
that network robots have the same number of joints and equivalent joint work spaces. A combination of the lyapunov-based
technique and the cross-coupling method has been used to establish the multirobot system asymptotic stability. The developed
control combines trajectory tracking and coordination algorithms. To address the time-delay problem in the cooperative network
communication, the suggested synchronization control law is shown to synchronize multiple robots as well as to track given
trajectory, taking into account the presence of the time delay. To this end, Krasovskii functional method has been used to deal with
the delay-dependent stability problem.

1. Introduction

Nowadays, much research has been focusing on group coor-
dination, cooperative control, and synchronization prob-
lems. In fact, motivated by the profit acquired by using multi-
ple inexpensive systems working together to achieve complex
tasks exceeding the abilities of a single agent, cooperative
synchronization control has received significant attention.
Distributed coordination and decentralized synchronization
of multiagent systems have recently been studies extensively
in the context of cooperative control [1–5], to name a few.
In particular, design based on graph theory and Laplacian
matrix produce interesting results [6–9]. Agreement, consen-
sus problems in the area of cooperative control of multiagent
systems have been studied in [7, 8, 10–12]. The coordination
control strategies are closely related to the synchronization
problem in which control laws are coupled and each agent
robot control is updated using local rule based on its own

sensors and the states of its neighbors. In this context,
one recent representative work [13] shows that we can
synchronize the multicomposed system in the case of partial
knowledge, that is, only position measuring. A decentralized
tracking control law globally exponentially synchronizes an
arbitrary number of robots and represents a generalization
of the average consensus problem. This has been presented
in [5]. A synchronization approach to trajectory tracking
of multiple mobile robots while maintaining time-varying
formations has been presented in [14]. Adaptive control
strategy to position synchronization of multiple motion
axes using cross-coupling technology has been developed
in [15]. In many engineering applications, communication
delays between subsystems cannot be neglected. Therefore,
the problem of time-delayed communication in control
of multirobot systems is important in numerous practical
applications. Indeed, without control measures of time
delays in cooperative task may even cause instability. The
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problem of time-delayed communication in control of mul-
tiagent systems has been studied in several references [7, 16–
18]. The consideration of time-delayed communication in
control of multirobot systems is a mainly practical necessity.
In particular, this need occurs when addressing areas which
require real-time applications such as operations in unsafe
environments and robotic surgery.

The objective of this paper is to design a control
approach that can achieve both synchronization of the robot
movements and asymptotic stable tracking of a common
desired trajectory. The proposed controller relies principally
on a consensus algorithm for systems modeled by nonlinear
second-order dynamics and applies the algorithm to the
synchronization control problem by choosing appropriately
information states on which consensus is reached. The
concept key of the new synchronizing controller is the
introduction of a state vector that quantifies the coordination
degree between a robot manipulator positions and different
positions of its neighbors. In the literature, most of earlier
works on multiagent coordination and consensus [3, 4, 7,
19] mainly deal with very simple dynamic models such as
linear systems and focuses on an algorithm taking the form
of first-order dynamics [11, 20, 21]. In particular, most
previous works on consensus and coordination of multiagent
systems using the graph theory and laplacian [3, 4, 7–9]
have presented a synchronization to the weighted average
of initial conditions but they do not consider multiagent
systems where there is a desired path to follow. Therefore,
the aforementioned algorithms cannot give solutions for
robot networks, where a desired trajectory is required.
In contrast, the present work deals with highly nonlinear
systems. Moreover, the developed approach achieves not
only global asymptotic synchronization of the configuration
variables, but also global asymptotic convergence to the
desired trajectory. Notable works have focused on highly
nonlinear systems. Their developed strategy requires the
coupling feedback of the most adjacent robots [5] or axis [15]
for the algorithm. However, the proposed strategy is based
in partial mesh topology in which there are interconnections
between all robots, such that all robots have direct influence
in the combined dynamics. We provide by the use of partial
mesh topology a high degree of reliability due to the presence
of multiple paths for data between robots. On the other hand,
it is not a fully connected mesh topology and consequently
we avoid the expense and the complexity required for a
connection between every robot in the network. In this
paper, we study the problem of mutual synchronization
when there are communication delays in the network. The
delays are assumed to be bounded.

2. Background and Preliminaries

2.1. Modelling Multi-Lagrangian System Network. The n de-
gree-of-freedom robot manipulator composed of rigid bod-
ies is expressed based on Newton’s and Euler’s equations as
follows:

Mi
(
qi
)
q̈i + Ci

(
qi, q̇i

)
q̇i + gi

(
qi
) = τi, (1)

where qi ∈ Rn denotes the joint angles of the ith manip-
ulator, q̇i ∈ Rn, and q̈i ∈ Rn are the vectors of joint velocity
and joint acceleration, respectively. Mi(qi) ∈ Rn×n represents
inertia matrix which is symmetric uniformly bounded and
positive definite. Ci(qi, q̇i)q̇i ∈ Rn is a vector function
containing Coriolis and centrifugal forces. gi(qi) ∈ Rn is a
vector function consisting of gravitational forces. Although
the above equations of motion are coupled and nonlinear,
they exhibit certain fundamental properties due to their
Lagrangian dynamic structure. The most important property
is the well-known skew symmetry of the matrix Ṁ−2C [22].

2.2. Multiagent Communication Topology. Since we based
on our coordination algorithm conception on consensus
strategy and concepts of graph theory, we present several
basic properties of these technology. Let G = (V ,E) a
digraph with N nodes, the set of nodes V = 1, 2, . . . ,n, and
edges E ⊆ V × V . Each node is labeled by vi ∈ V and each
edge is denoted by ei j = (vi, vj). Neighbors of agent vi are
denoted by N = {vj ∈ V/(vi, vj) ∈ E}. The adjacency matrix
A = [ai j] ∈ Rn×n of a weighted digraph is defined as

ai j > 0 if
(
vi, vj

)
∈ E,

ai j = 0, elsewhere.
(2)

Agent i communicates with agent j if j is a neighbor of
i or if ai j /= 0. Note that an edge ei j in a directed graph
means that robot j can reach information from robot i,
but not necessarily vice versa. In contrast, in an undirected
graph, pairs of node are unordered and an edge ei j implies
that robots i and j can get information from one another.
The adjacency matrix of an undirected graph has the same
meaning as that of the directed graph except that ai j = aji.
The degree matrix of the digraph G = (V ,E) is a diagonal
matrix defined as

di j =
⎧
⎨

⎩

degout(vi) if
(
i = j

) ∈ E,

0, otherwise,
(3)

where degout(vi) =
∑n

j=1 ai j .
The graph laplacian of G is defined as L = D − A, where

D = [dii] the degree matrix of G. In the undirected graph
case, L is symmetric positive semidefinite. In the present
topology, the edge represents bidirectional communication
links. This consists on a group of n manipulators interchang-
ing information that can be viewed as an undirected graph
(see Figure 1).

3. Controller Design

3.1. Tracking and Synchronization Errors. In this paper, we
consider the synchronization of multiple robots following
a common time-varying trajectory. We will design decen-
tralized control laws for n robots manipulators such that all
joint positions mutually synchronize and track a common
desired trajectory. The control objective of the proposed
synchronization controller scheme is to synchronize the
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Figure 1: Undirected graph topology structure.
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Figure 2: Robot network using bidirectional communication.

ith joint position and velocity qi, q̇i to the state of any
manipulator qj , q̇ j . Besides the controller is required to
regulate the joint positions qj to track a desired trajectory qd.
Specifically, the control torque for the ith robot is to control
the tracking error to converge to zero and at the same time,
to synchronize motions of n robots in communication so that
the synchronization error converges to zero. To this end, we
define the measure of the position tracking error of the ith
manipulator as

e1i(t) = qi(t)− qd(t) +
∫ t

t0
Λi
[
qi(λ)− qd(λ)

]
dλ, (4)

where Λi is a diagonal positive definite matrix. Information
on the vector e1i will give insight on the convergence of
the joint positions to the desired trajectory. It is required
to know the performance of the controller that is to know
how the trajectory of each robot manipulator converges with
respect to each other. There are various ways to choose
the synchronization error. For example in [13], authors
include the error information of all systems involved in

R2

R1 R3

Figure 3: The topology model of the robots in simulation.

the synchronization. Our approach will make use of the
cross-coupling technique to propose a feasible and efficient
synchronization error, which consists on a measure of the
synchronization for robot manipulator as defined as follows:

e2i(t) =
∑

j /= i

βi j
(
qi − qj

)
, (5)

where, βi j is a diagonal positive definite matrix which gives
insight on the weighted communication among the robot
network.

3.2. Feedback Control Design. The objective of this paper is to
design individual tracking controller for n manipulators such
that they coordinate their motions and track synchronously
a desired trajectory. To this end, we define the global
error which encompasses both synchronization error and
trajectory tracking error for manipulator i as

ei = e1i +
∫ t

t0
e2i(λ)dλ. (6)

Under the above strategy, motions of all manipulators are
synchronized. The control of each manipulator considers
motion responses of the other manipulators for synchro-
nization. It takes into account only robots which make the
exchange of information with it. The objective is to design
a control law such that the coupling errors, that is, the
position errors, velocity errors, and synchronization errors,
all converge to zero. For each manipulator, the control law τi
is defined as follows:

τi = Ci
(
qi, q̇i

)
q̇i + gi

(
qi
)

+ Mi
(
qi
)[
q̈d − Kpiei − Kdiėi −Λi

(
q̇i − q̇d

)]

+ Mi
(
qi
)
⎡

⎣
∑

j /= i

Ki j

(
e2i − e2 j

)
+ Λie2i

⎤

⎦,

(7)

where qd is a common trajectory reference to be tracked,
which is a smooth time-varying trajectory and for which
the first and the second derivatives exist for all t ≥ 0.
Kdi is a symmetric positive definite matrix. Kij is a matrix
that reflects the quality of communication channels; it is a
symmetric positive matrix.
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Figure 4: Robots synchronization and trajectory tracking.
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Figure 5: Position errors.

3.3. Stability Analysis. Substituting (7) into (1) yields

Mi
(
qi
)
q̈i =Mi

(
qi
)[
q̈d − Kpiei − Kdiėi −Λi

(
q̇i − q̇d

)]

+ Mi
(
qi
)
⎡

⎣
∑

j /= i

Ki j

(
e2i − e2 j

)
+ Λie2i

⎤

⎦.
(8)

This results in

q̈i = q̈d − Kpiei − Kdiėi −Λi
(
q̇i − q̇d

)

+
∑

j /= i

Ki j

(
e2i − e2 j

)
+ Λie2i,

(9)

which can be written as follows:

ëi = −Kpiei − Kdiėi +
∑

j /= i

Ki j

(
e2i − e2 j

)
+ Λie2i + ˙e2i. (10)

Using the expression of the synchronization error e2i and its
first derivative gives

ëi = −Kpiei − Kdiėi +
∑

j /= i

Ki j

(
e2i − e2 j

)

+
∑

j /= i

[
Kij
(
q̇i − q̇d

)−
(
q̇ j − q̇d

)]

+
∑

j /= i

ΛiKi j

[(
qi − qd

)−
(
qj − qd

)]
.

(11)

Further calculation, will result in

ëi = −Kpiei − Kdiėi +
∑

j /= i

Ki j

(
ėi − ė j

)
. (12)

Equation (12) represents the closed loop synchronized
system for the ith manipulator. In the sequel we proceed to
analyze the stability properties of the proposed synchronized
control scheme and ultimately to show that control goals: the
position errors, velocity errors, and synchronization errors,
all converge to zero. To prove the stability of the overall
synchronized system, we define

eT =
[
eT1 , eT2 , . . . , eTn

]T
. (13)
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Using (12) we obtain the synchronized error dynamics

ë = −Kpe − Kdė + Kcė, (14)

where Kp = diag(Kpi), Kd = diag(Kdi) and Kc is given by

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∑

j /= 1

K1 j · · · −K1 j · · · −K1n

· · · · · · · · · · · · · · ·
−Ki1 · · ·

∑

j /= i

Ki j · · · −Kin

· · · · · · · · · · · · · · ·
−Kn1 · · · −Knj · · ·

∑

j /=n

Knj

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (15)

Note that Kc is symmetric and positive semidefinite matrix,
since we have an undirected graph, that is, Kij = Kji.

The synchronized error dynamics (14) is a linear time
invariant system described by a second-order linear differen-
tial equation. A sufficient condition for the error dynamics
to be stable is that the matrices Kp and Kd − Kc are positive
definite. In particular, matrices Kdi can be diagonal satisfying

Kdi > 2
∑

i /= j

Ki j . (16)

To analyze the stability properties of the closed-loop error
dynamics (19), we take the following definite and radially
unbounded Lyapunov function candidate:

V = ėT ė + eTKpe. (17)

Its derivative to respect to time is

V̇ = −ėT(Kd − Kc), ė ≤ 0. (18)

It follows by direct application of Lasalle’s invariance prin-
ciple that the origin (e, ė) = (0, 0) is globally asymptotically
stable and lim ė → 0 for t → ∞.

Referring to the expression of the global error (6):

ei = qi − qd +
∫ t

t0
Λ
[
qi(λ)− qd(λ)

]
dλ

+
∫ t

t0

∑

j /= i

βi j
(
qi − qj

) (19)

as ė = 0 we have

q̇i − q̇d = −Λi
(
qi − qd

)−
∑

j /= i

βi j
(
qi − qj

)
. (20)

Setting εi = qi − qd, then (20) can be written as

ε̇i = −Λiεi −
∑

j /= i

βi j
(
εi − εj

)
. (21)

Our objective is to show that lim εi = 0 for t → ∞.
To this end, we define ε = [ε1 · · · · · · · εn]T and Λ =
[Λ1 · · · · · · · · · · · ·Λn]T . Then (21) can be written as

ε̇ = A · ε, (22)

where matrix A is given by

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−Λ1−
∑

j /= 1

β1 j · · · β1 j · · · β1n

· · · · · · · · · · · · · · ·
βi1 · · · −Λi−

∑

j /= i

βi j · · · βin

· · · · · · · · · · · · · · ·
βn1 · · · βnj · · · −Λn−

∑

j /=n

βnj

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (23)

We set the Lyapunov function candidate as

v(t) = εTε. (24)

Differentiating v(t) with respect to time yields

v̇ = 2
n∑

i=1

εiε̇i,

v̇ = 2
n∑

i=1

εi

⎛

⎝−Λiεi −
∑

j /= i

βi j
(
εi − εj

)
⎞

⎠,

v̇ = −2
n∑

i=1

Λiε
2
i − 2

n∑

i=1

∑

j /= i

βi j
(
εi − εj

)
εi,

v̇ = −2
n∑

i=1

Λiε
2
i − 2

n∑

i=1

∑

j /= i

βi jε
2
i + 2

n∑

i=1

∑

j /= i

βi jεiε j ,

(25)

knowing that

n∑

i=1

∑

j /= i

βi jε
2
i =

n∑

j=1

∑

i /= j

β jiε
2
j . (26)

Consequently,

v̇ = −2
n∑

i=1

Λiε
2
i −

n∑

i=1

∑

j /= i

βi j
(
εi − εj

)2 ≤ 0. (27)

It follows by direct application of Lasalle’s invariance that
the origin is globally asymptotically stable. Consequently we
obtain lim εi(t) → 0 for t → ∞. Then qi → qd and q̇i → q̇d
for t → ∞.

Referring to (20), we show that qi → qj for t → ∞.

4. Coordination with Time Delays

In this section, we study the coordination control problem
taking into account time delays of communication channels.
As a first assumption, we suppose that these delays can
be justified by the fact that data information sent by the
neighboring vehicles j /= i reaches vehicle i after a timedelay
due to the short-range communication channels. To take into
account the time delay produced during the communication
among the robots, we introduced in a coordination error
expression a term τ which represents the same time delay
due to the short-range communication channels. Therefore,
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Figure 6: Synchronization errors.
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Figure 7: Robots synchronization without communication delay.

a coordination error, in the time delay context, will be
presented as the well-known classical time delayed model of
multiagent network:

e2i(t) =
∑

j /= i

βi j
[
qi(t − τ)− qj(t − τ)

]
. (28)
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Figure 8: Robots synchronization in presence of time delay (0.5 s).
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Figure 9: Robots synchronization in presence of time delay (1 s).

Consequently, the controller implanted in each lagrangian
system among the network take the following expression:

τi = Ci
(
qi, q̇i

)
q̇i + gi

(
qi
)

+ Mi
(
qi
)[
q̈d − Kpiei(t)− Kdiėi(t)−Λi

(
q̇i − q̇d

)]

+ Mi
(
qi
)
⎡

⎣
∑

j /= i

Ki j

[
e2i(t−τ)−e2 j(t−τ)

]
+Λie2i(t−τ)

⎤

⎦.

(29)

It will be shown that the behavior of the coordinated system
under the effect of time delay changes significantly.
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Figure 10: Robots synchronization without time delay.
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Figure 11: Robots synchronization in presence of time delay.

4.1. Stability Analysis. Substituting (29) into (1) yields

Mi
(
qi
)
q̈i

=Mi
(
qi
)[
q̈d − Kpiei − Kdiėi −Λi

(
q̇i − q̇d

)]

+ Mi
(
qi
)
⎡

⎣
∑

j /= i

Ki j

[
e2i(t − τ)− e2 j(t − τ)

]
+ Λie2i(t − τ)

⎤

⎦.

(30)

Multiplying by M−1 and adding ė2i(t− τ) in both sides yields

q̈i − q̈d + Λi
(
q̇i − q̇d

)
+ ė2i(t − τ)

= −Kpiei − Kdiėi

+
∑

j /= i

Ki j

[
e2i(t − τ)− e2 j(t − τ)

]

+ Λie2i(t − τ) + ė2i(t − τ).

(31)

Using the expression of the synchronization error e2i and its
first derivative gives

ëi = −Kpiei − Kdiėi +
∑

j /= i

Ki j

[
e2i(t − τ)− e2 j(t − τ)

]

+
∑

j /= i

Ki j

[(
q̇i − q̇d

)−
(
q̇ j − q̇d

)]

+
∑

j /= i

ΛiKi j

[(
qi − qd

)−
(
qj − qd

)]
.

(32)

Further calculation, we obtain the synchronized error dy-
namics

ë = −Kpe − Kdė + Kcė(t − τ), (33)

where Kp, Kd, and Kc are the same matrices already defined
(see Section 3.3). By the Leibnitz formula, we have

ė − ė(t − τ) =
∫ t

t−τ
ë(λ)dλ (34)

substituting (34) into (33) leads to

ë = −Kpe − Kdė + Kc

(

ė −
∫ t

t−τ
ë(λ)dλ

)

. (35)

Setting ẽ = [e, ė]T . Therefore (35) can be written as

˙̃e =
⎛

⎝
0 I

−Kp −Kd + Kc

⎞

⎠ẽ −
⎛

⎝
0 0

0 Kc

⎞

⎠
∫ t

t−τ
˙̃e(λ)dλ, (36)

This yields the following form:

˙̃e = β0ẽ − β1

∫ t

t−τ
˙̃e(λ)dλ (37)

with β0 =
(

0 I
−Kp −Kd+Kc

)
and β1 =

(
0 0
0 Kc

)
.

To analyze the stability of the global system, we consider
the following Lyapunov-Krasovskii functional (LKF):

v(t) = v1(t) + v2(t) + v3(t),

v1(t) = ẽT(t)Pẽ(t),

v2(t) =
∫ t

t−τ
ẽT(λ)Rẽ(λ)dλ,

v3(t) =
∫ 0

−τ

∫ t

t+s

˙̃e
T

(α)Z ˙̃e(α)dαdλ,

(38)
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where P = PT > 0; R = RT > 0; Z = ZT > 0 are
weighting matrices of appropriate dimensions. A straightfor-
ward computation gives the time derivative of v(t) along the
solution of (37) as

v̇(t) = δT
[

2NTPM + NTRN −QTRQ + τMTZM
]
δ

−
∫ t

t−τ
˙̃e
T

(λ)Z ˙̃e(λ)dλ,
(39)

where δ = [ẽT(t), ẽT(t − τ)]T ; N = [β0,β1]; M = [I , 0]; Q =
[0, I]. The Jensen’s inequality gives a suitable bound for the
last term of (39).

−
∫ t

t−τ
˙̃e
T

(λ)Z ˙̃e(λ)dλ ≤
∫ t

t−τ
˙̃e
T

(λ)dλ
(
Z

τ

)∫ t

t−τ
˙̃e(λ)dλ

≤ −ẽTTT
(
Z

τ

)
Tẽ

(40)

with T = [I ,−I]. The time derivative of the LKF (38) can
thus be bounded by v̇(t) ≤ δTξδ, where ξ = 2NTPM +
NTRN − QTRQ + τMTZM − (1/τTTZT). Then if the LMI
ξ < 0 is satisfied, the derivative of the Lyapunov-Krasovskii
functional is negative definite. To ensure that matrix ξ < 0
is negative definite, we select appropriate control gains Kp >
K∗p andKd−Kc > K∗ through processing Matlab’s LMI solver
such that

2NTPM + NTRN −QTRQ + τMTZM − 1
τTTZT

< 0. (41)

Then, if the LMI ξ < 0 is satisfied, the derivative of
the Lyapunov-Krasovskii functional is therefore negative
definite. In consequence the origin ẽ = 0 is asymptotically
stable.

This results in e → 0 for t → ∞ and ė → 0 for t → ∞.
The proof for asymptotic convergence of the coordinated
tracking error ẽ is not sufficient to prove the convergence to
zero of both error e1 and e2. Our concern now is to show that
coordination is successfully realized for a specific time delay
τc.

The proof pursued the same line reasoning as the proof of
Section 3.3. Consequently, we obtain the following equation
derived from the global error expression:

ε̇i = −Λiεi −
∑

j /= i

Ki j

(
εi(t − τ)− εj(t − τ)

)
. (42)

Rewriting all states of (42) into a compact representation and
applying the Laplace transform leads to

sε(s)− ε(0) = −Λε(s)− e−τsKcε(s). (43)

This can be written as

ε(s) = (sI + Λ + e−τsKc)
−1ε(0). (44)

If the characteristic equation P(s, τ): det |sI +Λ+ e−τsKc| = 0
has all its zeros in the left half complex plan then the system
is stable and one can easily conclude about the convergence
of qi to qd. Since the ordinal system, free from time delay

Table 1: Control gains.

Control Gains
and JIC

Robot 1 Robot 2 Robot 3

kd diag{20} diag{15} diag{25}
kp diag{18} diag{10} diag{15}
k12 diag{0.8} diag{0.8}
k13 diag{0.5} diag{0.5}
k23 diag{0.2} diag{0.2}
JIC (2.5, 2.5) (−2, −2) (1.5, 1.5)

(i.e., τ = 0) is stable and that P(s, τ) is a continuous function
of τ, then using the D-Decomposition, the minimal positive
solution to the following equation:

τci =
arccos(−Λi/Kci)√(

Kci2 −Λ2
i

) (45)

would make all the zeros of the characteristic equation in the
left half complex plane. Therefore if we select τ ∈ [0, τc],
where τc = sup(τci) for all 1 ≤ i ≤ n, solutions of (44)
converge to zero and consequently qi → qd for t → ∞,
q̇i → q̇d for t → ∞, and qi → qj for t → ∞.

5. Simulation Results

To show the effectiveness of the proposed synchronizing
controller we provide some simulation results. These sim-
ulations were proposed for a network of 3 identical robot
manipulators interconnected under a cooperative scheme as
shown in Figure 2.

Let the communication structure among the robots
described by an undirected strongly connected graph topol-
ogy as shown in Figure 3. We set Joint Initial Conditions
(JICs), coupling and control gains for the three robots as
discussed below (see Table 1). Simulations are performed on
Matlab/Simulink. Figure 4 illustrates the synchronization of
robots that follow a common trajectory. This proves that the
tracking and synchronization objectives are attained by the
proposed controller.

Figures 5 and 6, show, respectively, the convergence of
error positions to zero and the convergence of synchronizing
errors to zero, explaining how robots, while tracking the
desired trajectory, synchronize their positions. The effect of
time delays on the coordination of robots is shown in the
following write-up. First, the delay-free case is presented in
Figure 7 in which it is shown how the three angular positions
asymptotically synchronize. Next, we consider the time delay
in communication. Synchronization while tracking periodic
trajectory is shown in Figures 8 and 9. From these figures, it is
seen that the robots do not have the same starting positions.
The speed for achieving an agreement depends essentially on
the time-delay communication channels. Figures 10 and 11
illustrate that the behavior of the coordinated system changes
significantly, under the effect of time delay.
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6. Conclusion

This paper has considered the synchronization problem in
distributed multi-Lagrangian systems. The aim of this work
was to find out a decentralized controller, which individually
applied to each lagrangian system, the synchronization in
position and velocity is therefore met. Reaching synchroniza-
tion stability of highly nonlinear robot dynamics constitutes
one of the main contributions of this paper. The proposed
control law ensures the robots’ states synchronization while
tracking a common desired trajectory. Another aspect of
robots coordination and trajectory tracking control was
investigated. In the coordination strategy there are practi-
cally interconnections between all the systems, such that
all systems have influence on the overall dynamics. The
proposed algorithm works under cooperative scheme in the
sense that it does not require any explicit leaders in the team.
The studied topology is connected under an undirected
interaction graph. To deal with time-delay problem in com-
munication between robots, the proposed decentralized con-
trol guarantees that the information variables of each robot
reach agreement even in the presence of communication
delay. Illustrative examples have shown the effectiveness of
the described strategy. Future work will address the coordi-
nation control of under actuated lagrangian systems.
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