3,796 research outputs found

    Bandwidth efficient multi-station wireless streaming based on complete complementary sequences

    Get PDF
    Data streaming from multiple base stations to a client is recognized as a robust technique for multimedia streaming. However the resulting transmission in parallel over wireless channels poses serious challenges, especially multiple access interference, multipath fading, noise effects and synchronization. Spread spectrum techniques seem the obvious choice to mitigate these effects, but at the cost of increased bandwidth requirements. This paper proposes a solution that exploits complete complementary spectrum spreading and data compression techniques jointly to resolve the communication challenges whilst ensuring efficient use of spectrum and acceptable bit error rate. Our proposed spreading scheme reduces the required transmission bandwidth by exploiting correlation among information present at multiple base stations. Results obtained show 1.75 Mchip/sec (or 25%) reduction in transmission rate, with only up to 6 dB loss in frequency-selective channel compared to a straightforward solution based solely on complete complementary spectrum spreading

    Towards QoE-Driven Optimization of Multi-Dimensional Content Streaming

    Get PDF
    Whereas adaptive video streaming for 2D video is well established and frequently used in streaming services, adaptation for emerging higher-dimensional content, such as point clouds, is still a research issue. Moreover, how to optimize resource usage in streaming services that support multiple content types of different dimensions and levels of interactivity has so far not been sufficiently studied. Learning-based approaches aim to optimize the streaming experience according to user needs. They predict quality metrics and try to find system parameters maximizing them given the current network conditions. With this paper, we show how to approach content and network adaption driven by Quality of Experience (QoE) for multi-dimensional content. We describe components required to create a system adapting multiple streams of different content types simultaneously, identify research gaps and propose potential next steps

    Machine Learning for Multimedia Communications

    Get PDF
    Machine learning is revolutionizing the way multimedia information is processed and transmitted to users. After intensive and powerful training, some impressive efficiency/accuracy improvements have been made all over the transmission pipeline. For example, the high model capacity of the learning-based architectures enables us to accurately model the image and video behavior such that tremendous compression gains can be achieved. Similarly, error concealment, streaming strategy or even user perception modeling have widely benefited from the recent learningoriented developments. However, learning-based algorithms often imply drastic changes to the way data are represented or consumed, meaning that the overall pipeline can be affected even though a subpart of it is optimized. In this paper, we review the recent major advances that have been proposed all across the transmission chain, and we discuss their potential impact and the research challenges that they raise

    Video-assisted Overtaking System enabled by V2V Communications

    Get PDF
    V2X (Vehicle-to-Everything) is a promising technology to diminish road hazards and increase driving safety. This thesis focuses in the transmission of video between vehicles (V2V, Vehicle-to-Vehicle) in an overtaking situation, helping drivers to be more aware and less error-prone in these situations. In the implementation, the vehicle reads from vehicle's CAN and GPS data to setup the system, streams his Line of Sight to the overtaking vehicle and uses DSRC as the communication technology

    Survey on QoE/QoS Correlation Models for Video Streaming over Vehicular Ad-hoc Networks

    Get PDF
    Vehicular Ad-hoc Networks (VANETs) are a new emerging technology which has attracted enormous interest over the last few years. It enables vehicles to communicate with each other and with roadside infrastructures for many applications. One of the promising applications is multimedia services for traffic safety or infotainment. The video service requires a good quality to satisfy the end-user known as the Quality of Experience (QoE). Several models have been suggested in the literature to measure or predict this metric. In this paper, we present an overview of interesting researches, which propose QoE models for video streaming over VANETs. The limits and deficiencies of these models are identified, which shed light on the challenges and real problems to overcome in the future
    corecore