10,479 research outputs found

    Wireless industrial monitoring and control networks: the journey so far and the road ahead

    Get PDF
    While traditional wired communication technologies have played a crucial role in industrial monitoring and control networks over the past few decades, they are increasingly proving to be inadequate to meet the highly dynamic and stringent demands of today’s industrial applications, primarily due to the very rigid nature of wired infrastructures. Wireless technology, however, through its increased pervasiveness, has the potential to revolutionize the industry, not only by mitigating the problems faced by wired solutions, but also by introducing a completely new class of applications. While present day wireless technologies made some preliminary inroads in the monitoring domain, they still have severe limitations especially when real-time, reliable distributed control operations are concerned. This article provides the reader with an overview of existing wireless technologies commonly used in the monitoring and control industry. It highlights the pros and cons of each technology and assesses the degree to which each technology is able to meet the stringent demands of industrial monitoring and control networks. Additionally, it summarizes mechanisms proposed by academia, especially serving critical applications by addressing the real-time and reliability requirements of industrial process automation. The article also describes certain key research problems from the physical layer communication for sensor networks and the wireless networking perspective that have yet to be addressed to allow the successful use of wireless technologies in industrial monitoring and control networks

    Applications of Repeated Games in Wireless Networks: A Survey

    Full text link
    A repeated game is an effective tool to model interactions and conflicts for players aiming to achieve their objectives in a long-term basis. Contrary to static noncooperative games that model an interaction among players in only one period, in repeated games, interactions of players repeat for multiple periods; and thus the players become aware of other players' past behaviors and their future benefits, and will adapt their behavior accordingly. In wireless networks, conflicts among wireless nodes can lead to selfish behaviors, resulting in poor network performances and detrimental individual payoffs. In this paper, we survey the applications of repeated games in different wireless networks. The main goal is to demonstrate the use of repeated games to encourage wireless nodes to cooperate, thereby improving network performances and avoiding network disruption due to selfish behaviors. Furthermore, various problems in wireless networks and variations of repeated game models together with the corresponding solutions are discussed in this survey. Finally, we outline some open issues and future research directions.Comment: 32 pages, 15 figures, 5 tables, 168 reference

    Wireless Broadband Access: Policy Implications of Heterogeneous Networks

    Get PDF
    A wireless heterogeneous network can help increase the access transmission speed and contribute thereby to the broadband deployment policies of administrations and telecommunications operators. Given the technical particularities of wireless heterogeneous networks, the deployment of wireless heterogeneous networks raises a number of challenges that need to be addressed by regulatory authorities. This article analyses the following regulatory implications: standardisation and technology neutrality, spectrum management, market analysis, open access and infrastructure sharing, interconnection pricing and charging, broadband deployment policies, and privacy and security issues. --4G,heterogeneous networks,cooperative networks,spectrum management,regulation,wireless networks

    Efficient Cooperative Anycasting for AMI Mesh Networks

    Full text link
    We have, in recent years, witnessed an increased interest towards enabling a Smart Grid which will be a corner stone to build sustainable energy efficient communities. An integral part of the future Smart Grid will be the communications infrastructure which will make real time control of the grid components possible. Automated Metering Infrastructure (AMI) is thought to be a key enabler for monitoring and controlling the customer loads. %RPL is a connectivity enabling mechanism for low power and lossy networks currently being standardized by the IETF ROLL working group. RPL is deemed to be a suitable candidate for AMI networks where the meters are connected to a concentrator over multi hop low power and lossy links. This paper proposes an efficient cooperative anycasting approach for wireless mesh networks with the aim of achieving reduced traffic and increased utilisation of the network resources. The proposed cooperative anycasting has been realised as an enhancement on top of the Routing Protocol for Low Power and Lossy Networks (RPL), a connectivity enabling mechanism in wireless AMI mesh networks. In this protocol, smart meter nodes utilise an anycasting approach to facilitate efficient transport of metering data to the concentrator node. Moreover, it takes advantage of a distributed approach ensuring scalability

    Secure Routing in Wireless Mesh Networks

    Get PDF
    Wireless mesh networks (WMNs) have emerged as a promising concept to meet the challenges in next-generation networks such as providing flexible, adaptive, and reconfigurable architecture while offering cost-effective solutions to the service providers. Unlike traditional Wi-Fi networks, with each access point (AP) connected to the wired network, in WMNs only a subset of the APs are required to be connected to the wired network. The APs that are connected to the wired network are called the Internet gateways (IGWs), while the APs that do not have wired connections are called the mesh routers (MRs). The MRs are connected to the IGWs using multi-hop communication. The IGWs provide access to conventional clients and interconnect ad hoc, sensor, cellular, and other networks to the Internet. However, most of the existing routing protocols for WMNs are extensions of protocols originally designed for mobile ad hoc networks (MANETs) and thus they perform sub-optimally. Moreover, most routing protocols for WMNs are designed without security issues in mind, where the nodes are all assumed to be honest. In practical deployment scenarios, this assumption does not hold. This chapter provides a comprehensive overview of security issues in WMNs and then particularly focuses on secure routing in these networks. First, it identifies security vulnerabilities in the medium access control (MAC) and the network layers. Various possibilities of compromising data confidentiality, data integrity, replay attacks and offline cryptanalysis are also discussed. Then various types of attacks in the MAC and the network layers are discussed. After enumerating the various types of attacks on the MAC and the network layer, the chapter briefly discusses on some of the preventive mechanisms for these attacks.Comment: 44 pages, 17 figures, 5 table
    • …
    corecore