3 research outputs found

    Decentralized Event-Triggered Consensus of Linear Multi-agent Systems under Directed Graphs

    Full text link
    An event-triggered control technique for consensus of multi-agent systems with general linear dynamics is presented. This paper extends previous work to consider agents that are connected using directed graphs. Additionally, the approach shown here provides asymptotic consensus with guaranteed positive inter-event time intervals. This event-triggered control method is also used in the case where communication delays are present. For the communication delay case we also show that the agents achieve consensus asymptotically and that, for every agent, the time intervals between consecutive transmissions is lower-bounded by a positive constant.Comment: 9 pages, 5 figures, A preliminary version of this manuscript has been submitted to the 2015 American Control Conferenc

    An event-driven approach to control and optimization of multi-agent systems

    Get PDF
    This dissertation studies the application of several event-driven control schemes in multi-agent systems. First, a new cooperative receding horizon (CRH) controller is designed and applied to a class of maximum reward collection problems. Target rewards are time-variant with finite deadlines and the environment contains uncertainties. The new methodology adapts an event-driven approach by optimizing the control for a planning horizon and updating it for a shorter action horizon. The proposed CRH controller addresses several issues including potential instabilities and oscillations. It also improves the estimated reward-to-go which enhances the overall performance of the controller. The other major contribution is that the originally infinite-dimensional feasible control set is reduced to a finite set at each time step which improves the computational cost of the controller. Second, a new event-driven methodology is studied for trajectory planning in multi-agent systems. A rigorous optimal control solution is employed using numerical solutions which turn out to be computationally infeasible in real time applications. The problem is then parameterized using several families of parametric trajectories. The solution to the parametric optimization relies on an unbiased estimate of the objective function's gradient obtained by the "Infinitesimal Perturbation Analysis" method. The premise of event-driven methods is that the events involved are observable so as to "excite" the underlying event-driven controller. However, it is not always obvious that these events actually take place under every feasible control in which case the controller may be useless. This issue of event excitation, which arises specially in multi-agent systems with a finite number of targets, is studied and addressed by introducing a novel performance measure which generates a potential field over the mission space. The effect of the new performance metric is demonstrated through simulation and analytical results

    An event-driven approach to control and optimization of multi-agent systems

    Get PDF
    This dissertation studies the application of several event-driven control schemes in multi-agent systems. First, a new cooperative receding horizon (CRH) controller is designed and applied to a class of maximum reward collection problems. Target rewards are time-variant with finite deadlines and the environment contains uncertainties. The new methodology adapts an event-driven approach by optimizing the control for a planning horizon and updating it for a shorter action horizon. The proposed CRH controller addresses several issues including potential instabilities and oscillations. It also improves the estimated reward-to-go which enhances the overall performance of the controller. The other major contribution is that the originally infinite-dimensional feasible control set is reduced to a finite set at each time step which improves the computational cost of the controller. Second, a new event-driven methodology is studied for trajectory planning in multi-agent systems. A rigorous optimal control solution is employed using numerical solutions which turn out to be computationally infeasible in real time applications. The problem is then parameterized using several families of parametric trajectories. The solution to the parametric optimization relies on an unbiased estimate of the objective function's gradient obtained by the "Infinitesimal Perturbation Analysis" method. The premise of event-driven methods is that the events involved are observable so as to "excite" the underlying event-driven controller. However, it is not always obvious that these events actually take place under every feasible control in which case the controller may be useless. This issue of event excitation, which arises specially in multi-agent systems with a finite number of targets, is studied and addressed by introducing a novel performance measure which generates a potential field over the mission space. The effect of the new performance metric is demonstrated through simulation and analytical results
    corecore