
Boston University
OpenBU http://open.bu.edu
Theses & Dissertations Boston University Theses & Dissertations

2016

An event-driven approach to
control and optimization of
multi-agent systems

https://hdl.handle.net/2144/17066
Boston University

BOSTON UNIVERSITY

COLLEGE OF ENGINEERING

Dissertation

AN EVENT-DRIVEN APPROACH TO CONTROL AND

OPTIMIZATION OF MULTI-AGENT SYSTEMS

by

YASAMAN KHAZAENI

B.S., Sharif University of Technology, 2005
M.S., West Virginia University, 2009

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

2016

c© 2016 by
YASAMAN KHAZAENI
All rights reserved

Approved by

First Reader

Christos G. Cassandras, Ph.D.
Professor of Electrical and Computer Engineering
Professor and Head of Systems Engineering

Second Reader

Ioannis Ch. Paschalidis, Ph.D.
Professor of Electrical and Computer Engineering
Professor of Systems Engineering
Professor of Biomedical Engineering

Third Reader

Pirooz Vakili, Ph.D.
Associate Professor of Mechanical Engineering
Associate Professor of Systems Engineering

Fourth Reader

Sean B. Andersson, Ph.D.
Associate Professor of Mechanical Engineering
Associate Professor of Systems Engineering

To my family

Baba, Maman and Ali

Acknowledgments

At first, I would like to express my most humble gratitude to my advisor, Prof.

Christos G. Cassandras, without whom I would have never been able to be where

I am right now. His sincere interest in my success, his patience, motivation, and

incredible amount of knowledge have been the light on my way. His guidance helped

me find my path in research in many ways. I could not have imagined having a better

advisor and mentor for my PhD study.

Besides my advisor, I would like to sincerely thank the rest of my dissertation

committee, Prof. Paschalidis, Prof. Vakili and Prof. Andersson. Thanks for your

cooperation, guidance and most of all your ideas and questions. I also thank Prof.

Caramanis for accepting to serve as the chair for my PhD defense.

During my PhD journey, everybody in the Division of Systems Engineering have

been kind, respectful, and always available for help. I would like to specially thank

Prof. Wang, Ms. Elizabeth Flagg, Ms. Cheryl Stewart, and Ms. Ruth Mayson

for making everything possible in the past five years. I also thank the Center for

Information and Systems Engineering for their great help throughout these years,

specially I thank Ms. Denise Joseph and Ms. Christina Polyzos for all their help.

Having spent most of my time here at CODES lab during the past four and half

years, I would like to thank my current and past labmates for all the moments we

have spent together. For all the nights we spent on deadlines, the fun conversations,

and for making this journey much more meaningful. Special thanks to Sepideh, Julia,

Xuchao, Xinmiao, Yue, Nan and Rebecca. Also to the rest of my BU family, Setareh,

Mohammad, Armin, Shahrzad, and Soudeh who were always up for a tea time and

awesome conversations.

I also like to thank Elli and Evgeny for making my first year at BU the most

memorable year ever. Cheers to all the nights we studied for the qualifying exams

v

which made us friends for life.

In all different stages of your life, you need those friends who would help you

forget about all the stress and re-energize, I have been blessed with many and with

all my heart I am grateful to them. Vida, Sheyda, Maryam, Hossein, Mohammad,

Sadaf, Omeed, Shirin, Julia, Eugene and Amir, I couldn’t be me without you all

and if it wasn’t for your support I would have never survived another five years of

graduate school.

On a lighter note, I thank my two beautiful cats, Shooka and Keeja, who made

sure to sit by my side all day and night when I was finishing up this dissertation.

Last but of course not least, I want to thank my dearest family. I am thankful to

my Dad. Baba, I appreciate every single moment I have spent with you and I regret

all those that I have missed. Your love keeps my heart beating. I am for ever thankful

to my Mom. Maman, You have been what I have always wanted to be. Your love and

friendship are my most valuable assets. Thanks for asking me to calculate the sum

of one to ten when I was nine and thanks for teaching me math for it is the purest

joy of my life.

I am and will always be indebted and thankful to Ali for his support, presence

and love. You have the most lovable soul and the most loving heart. We made it here

and it was only possible together. I love you.

vi

AN EVENT-DRIVEN APPROACH TO CONTROL AND

OPTIMIZATION OF MULTI-AGENT SYSTEMS

YASAMAN KHAZAENI

Boston University, College of Engineering, 2016

Major Professor: Christos G. Cassandras, PhD
Professor of Electrical and Computer Engineering,
Professor and Head of Systems Engineering

ABSTRACT

This dissertation studies the application of several event-driven control schemes in

multi-agent systems. First, a new cooperative receding horizon (CRH) controller

is designed and applied to a class of maximum reward collection problems. Target

rewards are time-variant with finite deadlines and the environment contains uncer-

tainties. The new methodology adapts an event-driven approach by optimizing the

control for a planning horizon and updating it for a shorter action horizon. The

proposed CRH controller addresses several issues including potential instabilities and

oscillations. It also improves the estimated reward-to-go which enhances the overall

performance of the controller. The other major contribution is that the originally

infinite-dimensional feasible control set is reduced to a finite set at each time step

which improves the computational cost of the controller.

Second, a new event-driven methodology is studied for trajectory planning in

multi-agent systems. A rigorous optimal control solution is employed using numeri-

cal solutions which turn out to be computationally infeasible in real time applications.

The problem is then parameterized using several families of parametric trajectories.

vii

The solution to the parametric optimization relies on an unbiased estimate of the

objective function’s gradient obtained by the “Infinitesimal Perturbation Analysis”

method. The premise of event-driven methods is that the events involved are ob-

servable so as to “excite” the underlying event-driven controller. However, it is not

always obvious that these events actually take place under every feasible control in

which case the controller may be useless. This issue of event excitation, which arises

specially in multi-agent systems with a finite number of targets, is studied and ad-

dressed by introducing a novel performance measure which generates a potential field

over the mission space. The effect of the new performance metric is demonstrated

through simulation and analytical results.

viii

Contents

1 Introduction 1

1.1 Cooperative Control . 1

1.2 Time-driven and Event-driven Control 4

1.3 Receding Horizon Control - an Event-driven Approach 8

1.3.1 Maximum Reward Collection Problem 12

1.4 Event-driven Control of Multi-agent Systems 16

1.4.1 Data Harvesting Problem . 16

1.4.2 Optimal Control Methods . 20

1.5 Thesis Contributions . 22

1.5.1 Event-driven Receding Horizon Control of Multi-agent System 22

1.5.2 Event Excitation in Multi-agent Systems 24

1.5.3 Event-driven Trajectory Optimization in Multi-agent Systems 26

1.6 Outline of This Thesis . 27

2 Maximum Reward Collection Problem 29

2.1 Problem Description . 29

2.1.1 Mission Space Topology . 32

2.2 An Event-driven Optimal Control View 34

2.3 Review of The Previous CRH Controller 36

2.3.1 Cooperation Scheme . 36

2.3.2 Planning and Action Horizons 39

2.3.3 Limitations of the Previous CRH controller 40

ix

2.4 The New CRH Controller . 42

2.4.1 Travel Cost Factor: . 43

2.4.2 Active Targets . 44

2.4.3 Action Horizon . 46

2.4.4 Look Ahead and Aggregate Algorithm 48

2.4.5 Two Target and One Agent Case 57

2.4.6 Monotonicity in the Look Ahead Steps 58

2.5 Simulation Results . 61

2.6 TSP Benchmarks Comparison . 61

2.7 Limited Sensing Agents . 62

2.8 Addressing Instabilities . 62

2.9 Comparison with the Previous work 63

2.9.1 Random Cases Comparison 66

2.10 Sparsity Factor in Clustered Missions 67

3 Event Excitation in Multi-agent Systems 69

3.1 General Framework for Multi-agent Systems 69

3.2 Event-driven IPA Calculus . 75

3.3 The Data Collection Problem . 79

3.3.1 Event Excitation . 85

3.4 Simulation Results . 91

4 Data Harvesting Problem 96

4.1 Problem Formulation . 96

4.1.1 Queueing Model . 96

4.1.2 The Hybrid System . 100

4.1.3 Performance Measure . 101

4.1.4 Agent’s Utilization . 104

x

4.1.5 Event Excitation . 104

4.1.6 Final Cost . 105

4.1.7 Optimization Problem . 106

4.2 Optimization Methodology . 107

4.2.1 Agent Trajectory Parameterization 109

4.3 IPA Derivatives Calculation . 113

4.4 Simulation Results . 127

4.5 Comparison with a Graph Based Algorithm 129

5 Conclusions and Future Directions 142

5.1 Future Directions . 145

5.1.1 Extensions for CRH controller: 145

5.1.2 Extensions for Trajectory Optimization: 145

5.1.3 Agent’s Model Extensions: . 146

5.1.4 Extension to Decentralized Control Methods 146

Appendices 147

A Mathematical Proofs 148

A.1 Chapter 2 . 148

A.1.1 Proof of Lemma 2.1 . 148

A.1.2 Proof of Lemma 2.2 . 149

A.1.3 Proof of Theorem 2.1 . 151

A.1.4 Proof of Theorem 2.2 . 151

A.2 Chapter 4 . 153

A.2.1 Elliptical Trajectories . 153

A.2.2 Fourier Series Trajectories . 155

A.2.3 Objective Function Gradient 156

xi

References 158

Curriculum Vitae 167

xii

List of Tables

2.1 TSP benchmark instances comparison with the CRH controller algorithm 61

2.2 20 Target and 2 Agents Random Missions 67

2.3 Effect of the sparsity factor for clustered missions ζi 68

4.1 Hybrid System Events . 101

4.2 Results Comparison for Case I . 128

4.3 Results Comparison for Case II . 128

4.4 Results Comparison for Case III . 128

4.5 Results Comparison with PSH for Case II 130

4.6 Results Comparison with PSH for Case III 130

xiii

List of Figures

1·1 Time-driven and event-driven receding horizon 11

2·1 Black Curve: Di = 200, αi = 0.2, β = 0.1 Red Curve:Di = 200, αi =

0.2, β = 0.01 Blue Curve:Di = 200, αi = 1 30

2·2 Sample mission space with 2 agents (Black circles) and 5 targets (Blue

squares) and one base (Red triangle) 32

2·3 Sample mission space with filled blue regions as obstacles 33

2·4 Cooperative partitions for 4 agents, location shown with black dots -

∆ = 0.5 : Blue - ∆ = 0.35 : Magenta - ∆ = 0.25 : Green - ∆ = 0.05 :

Red . 38

2·5 Calculation of Planning Horizon Hk 40

2·6 The Active Target Set for agent 1: S1(x1(tk), Hk) = {1, 2, 4, 5} 45

2·7 Multiple-Immediate-Target Event happens with agent at equal dis-

tance to targets 1 and 5 . 47

2·8 Agent’s Heading in a Euclidean Mission Space 49

2·9 Two Different Feasible Points in the Set Fj(tk, Hk) 51

2·10 Sample mission with 5 targets and 1 agent 52

2·11 The tree structure for the 5 target mission 53

2·12 Sample mission space with 2 targets and one agent 59

2·13 10 Target mission with different number of look ahead steps 60

2·14 Comparison of the two CRH controller on a 3 targets mission 63

2·15 Original and new CRH comparison for a symmetrical 8 target case . . 64

xiv

2·16 Performance comparison of the original and new CRH algorithms (Num-

bers in red show the reward for each target) 66

3·1 Multi-agent system in a dynamic setting, blue areas are obstacles . . 70

3·2 Sample trajectories . 73

3·3 One Target R(w, t) Calculation . 87

3·4 R function illustration . 90

3·5 One agent and seven target scenario 94

3·6 Two agent and seven targets scenario 95

4·1 Data harvesting queueing model for M targets and N agents 97

4·2 One target i and one agent j hybrid automaton 102

4·3 Two trajectories with same objective function value 103

4·4 TPBVP Trajectories for case I . 131

4·5 Elliptical Trajectories for case I . 132

4·6 Fourier Trajectories for case I . 133

4·7 Elliptical Trajectories for Case II . 134

4·8 Fourier Trajectories for Case II . 135

4·9 Elliptical Trajectories for case III . 136

4·10 Fourier Trajectories for case III . 137

4·11 Fourier Trajectories for case III with Stochastic Arrival 138

4·12 PSH Sequences for case III . 139

4·13 Elliptical Sequences for case III . 140

4·14 Fourier Sequences for case III . 141

xv

List of Abbreviations

CRH Cooperative Receding Horizon
DES Discrete Event Systems
DP Dynamic Programming
DVRP Dynamic Vehicle Routing Problem
HS Hybrid Systems
IPA Infinitesimal Perturbation Analysis
KP Knapsack Problem
MPC Model Predictive Control
MRCP Maximum Reward Collection Problem
OP Orienteering Problem
PMP Pontryagin’s Maximum Principle
RHC Receding Horizon Control
TPBVP Two Point Boundary Value Problem
TSP Traveling Salesman Problem
UAV Unmanned Aerial Vehicle
VRP Vehicle Routing Problem
WSN Wireless Sensor Network

xvi

1

Chapter 1

Introduction

In this chapter, we will go through some fundamental problem of cooperative control

and then move to basics of time-driven and event-driven control methods. Afterward

we introduce some background on methods that have been used in this dissertation

such as Receding Horizon Control and Optimal Control Methods. Later, we intro-

duce the two main problems discussed in the dissertation. This chapter is ended by

providing the main contributions of this work.

1.1 Cooperative Control

Cooperative Control deals with systems that are characterized by a set of intercon-

nected decision-making components with limited storage and processing capabilities,

that can provide locally sensed information and limited inter-component communi-

cations, all seeking to achieve objectives defined globally or individually (Shamma,

2007), (Murray, 2007), (Murphey and Pardalos, 2002).

Cooperative control problems appeared in the research areas of military sys-

tems and got expanded into mobile sensor networks, manufacturing, transportation

systems, smart cities and other network problems. Flight vehicle formation (Fax

and Murray, 2004), (Fowler and D’Andrea, 2002), UAV cooperative control (Parker,

1993), swarm formation (Olfati-Saber, 2007), (Bayindir, 2016),(Tanner et al., 2007),

cooperative classification and surveillance (Chandler et al., 2001), mobile agents co-

ordination (Jadbabaie et al., 2003), rendez-vous problems (McLain et al., 2001), (Yao

2

et al., 2010), persistent monitoring (Cassandras et al., 2013) and coverage control

(Zhong and Cassandras, 2011), (Schwager et al., 2009), (Cortes et al., 2004), are some

well known examples. Another problem that has been extensively looked at is the

consensus problems where the network entities are supposed to reach an agreement

based on a distributed set of information which normally is only partially available to

each of them at the beginning of the problem (Tahbaz-Salehi and Jadbabaie, 2008),

(Ren and Beard, 2008), (Ren et al., 2005a).

In any cooperative control problem, the controllable members of the network

are responsible for the cooperation. This cooperation might be through carrying

information and resources or performing tasks within the network. These entities can

be autonomous vehicles or UAVs, mobile robots acting, mobile sensors as message

ferries, etc. In a general framework we call these cooperating members, “agents” and

the problems that involve controlling a network of these agents are called multi-agent

cooperative control problems. In most cases, problems have points of interests within

the problem environment which can be locations that need to be visited, sensors

or data sources that should be collected or a formation trajectory that should be

followed by vehicles. We call these points of interest, “targets”. Targets may also

carry information or they may be moving, but they don’t actuate any control unlike

the agents that are responsible for actuation of the control. The solution to these

problems is to find the control for all the agents that optimizes the global/individual

objectives involving the targets of the problem.

Optimizing a multi-agent system, is to find the best agents’ state to optimize

the system’s performance measure that describes the interaction of these agents with

the environment. These optimizations are either static when a single state value (i.e.

location) of the agents need to be found. An example for such problem are task

allocation where multiple agents are going to be assigned to a number of tasks by

3

optimizing a certain total reward (Panagou et al., 2014), or coverage control problem

where optimal location of agents are calculated to optimally cover a bounded envi-

ronment (Sun et al., 2014). On the other hand, the dynamic multi agent problems

are when, the state of the agents is optimized for a period of time which can be finite

or infinite. These can come down to many types of trajectory optimization problems

such as persistent monitoring, data harvesting, robot’s trajectory planning around

obstacles, and many other such problems that were mentioned before. The static

problems also can have a further dynamic optimization step that designs the path for

the mobile agents to pursue the task allocation, etc.

The general setting of multi-agent systems gives rise to a complex stochastic

system that can be solved in a centralized or decentralized fashion. In the centralized

methods it is only in the execution level that agents collaborate and the decision

making happens by a central computer while all the system information is known to

the central station and no communication is needed between the agents. Every agent’s

controls are calculated by the central computer. The agents would only actuate the

control they receive from the central station.

In the centralized approach a global optimization problem is formulated where

the total objective function takes into account every agent’s contribution. This global

optimization problem is then solved for optimal control values for all agents. This op-

timization problem is normally is a complex nonlinear problem which is computation-

ally expensive to solve. Solution methods can be based on non-linear programming

(Raghunathan et al., 2003), game theoretic frameworks (Harmati and Skrzypczyk,

2009), or semi-definite programming (Frazzoli et al., 2001).

The computation cost of the centralized algorithm can grow exponentially with

the number of agents and they become more expensive in terms of computation

and memory (Defoort et al., 2009). Despite these drawbacks, for systems where

4

the agents don’t have computing capabilities, or systems where synchronicity is very

important we are better off with centralized methods and have to find solutions that

can overcome the computational burdens.

On the other hand, in the decentralized methods, agents can collaborate in de-

cision makings through a distributed system and each agent has a memory and com-

putation capacity. The agent is capable of calculating its own control given that it

receives enough information from its neighbors. Communication between the agents

is the key difference between the centralized and decentralized cooperative control

methods. Identification of the pieces of information to be shared between agents is a

critical step in the formulation of a decentralized approach. In these algorithms, the

state of the problem is only partially known by each agent (Ren et al., 2005b). (Ren,

2006), (Li and Cassandras, 2006a), (Cruz et al., 2007).

In (Ren, 2006) the centralized and decentralized implementations of a consensus

based algorithm are compared for problems such as cooperative timing, formation

maintenance, rendez-vous, altitude alignment, and synchronized rotations where it’s

shown decentralized schemes are superior to centralized schemes in terms of robust-

ness and scalability.

1.2 Time-driven and Event-driven Control

The fundamental view of dynamical systems has mainly been based on a time-driven

approach which is rooted in the theory of differential equations. We basically hy-

pothesize a “clock” for the system where every “clock-tick” updates the state of the

system. The theories that come after for sampling, estimation, control and optimiza-

tion of the dynamical systems are based on this event-driven approach. The clock-tick

synchronizes all the components of the system and updates are recorded even when

no changes occur at each tick.

5

While this has historically resulted in many advancement in control and optimiza-

tion designs, by moving to wireless, networked, and distributed complex systems; the

applicability of the time-driven approach falls short in some areas. While it is close to

impossible to hold the synchronicity for all the components, it also is not efficient to

trigger actions with every clock-tick when such actions may be unnecessary. On the

other end, event-driven approaches offer an alternative view to the modeling, control,

communication, and optimization of dynamical systems.

The general idea behind the event-driven methods is that the system at hand

doesn’t necessarily need actions to be taken at each clock-tick. By accurately under-

standing the systems dynamics, one can identify proper events that cause changes

in the dynamics and call for actions to be taken. One can also note that this new

paradigm can include the traditional time-driven view if the clock-tick is considered

a proper event in the system. Defining the right events is a crucial modeling step and

has to be done with great understanding of the system.

The foundation of event-driven methods is mostly understood in studying the

theory of discrete event systems(DES) and Hybrid Systems(HS) (Cassandras and

Lafortune, 2006), but more recently there have been significant advances in applying

event-driven methods (also referred to as “event-based”and “event-triggered”) to clas-

sical feedback control systems; e.g., see (Heemels et al., 2008), (Anta and Tabuada,

2010), (Trimpe and D’Andrea, 2014). In the distributed networked system the idea of

event-driven control allows for less communication while achieving same performance

goals if designed properly, see (Miskowicz, 2015) and (Cassandras, 2014) and refer-

ences therein. Event-driven approaches are also attractive in receding horizon control,

where it is computationally inefficient to reevaluate a control value over small time

increments as opposed to event occurrences defining appropriate planning horizons

for the controller e.g., see (Li and Cassandras, 2006b), (Khazaeni and Cassandras,

6

2014).

One main area of this application is in the decentralized or distributed control

systems where the event driven method allows for an event-driven communication

between the agents of the system instead of synchronous communication protocols

(Zhong and Cassandras, 2010). This asynchronous, event-driven communication can

help saving the energy of the agents specially when they are sensors with low power

capacity in a large sensor network or it can create a more efficient communication

when there is limited wireless communication capability in the system. A comparison

of time-driven and event-driven control for stochastic systems in favour of the latter

is found in (Astrom and Bernhardsson, 2002).

Uncertain environment and dynamics in multi-agent systems adds anther layer

of complexity when one tries to optimize these systems. In these problems, the dy-

namic of the agents and targets can be uncertain. In (Yucelen and Johnson, 2012) the

agents are autonomous vehicles with uncertain dynamics where a new vehicle-level

decentralized robust adaptive control approach is introduced to suppress the effect of

nonlinear uncertain dynamics of the vehicles. In (Zeng-Guang et al., 2009) a decen-

tralized robust adaptive control approach is introduced for the consensus problem of

multi-agent system. The uncertainties of the vehicle dynamics are addressed by using

adaptive neural network and robust control techniques. Other uncertainties can be

a result of the problem environment like obstacles that are unknown or threats that

can appear during the course of the problem and should be avoided by the agents; see

(Blackmore et al., 2011), (Deittert et al., 2010), (Polycarpou et al., 2001), (Burgard

et al., 2002). Targets that have uncertain dynamic and behavior like random times

of arrival can be another source of uncertainty, (Li and Cassandras, 2006b).

Modeling the uncertainties can be different depending on the type of information

at hand. Many works use probabilistic models and use methods such as Bayesian

7

filtering at each iteration to improve the prior information and basically learn the

system. In (Furukawa et al., 2006) a coordinated control technique is built using

heterogeneous vehicles to autonomously search for and track multiple targets using

recursive Bayesian filtering. They use a grid-based probability density function (PDF)

to represent target location in the space.

In the uncertain environment, where new information about the environment

might become available at any time and no probabilistic information is available a

prioi, we can see each new piece of information as a random event in the problem

environment like changes in the location or characteristic of a target, or a failure in one

of the agents happening at a random time. This allows one to pro-actively respond

to random events without any prior information that is being learned throughout

the course of the mission. Such examples are shown to work effectively in some

cases where no information is available on the arrival time of targets, see (Li and

Cassandras, 2006b), (Khazaeni and Cassandras, 2014).

In this approach, when an event happens, a new set of controls need to be

calculated for all the agents in contrast to the time-driven view where the new controls

are calculated periodically with a synchronous clock. One can also define, artificial

timeout events to ensure the control is re-evaluated frequent enough in case no new

information is becoming available. This can help in ensuring the stability of the

controller. In (Demir and Lunze, 2012) authors propose an event-driven design for a

multi-agent systems controller. It is shown that the system behavior with continuous

state-feedback controller can be approximated with this event-driven controller for

any arbitrary precision. The performance of the event-driven controller is evaluated

by comparing the event-driven control loop with the continuous state-feedback loop.

8

1.3 Receding Horizon Control - an Event-driven Approach

In multi-agent systems optimization the resulting problem is high dimensional com-

plex optimal control problem where the solution can be computationally intractable.

The common technique that is used in solving problems with this level of complexity

in real time is to divide the problem into sub-problems. The first view is a functional

decomposition where the complete complex problem is decomposed into sub-problems

with less complex objectives and possibly fewer variables (Bellingham et al., 2002),

(Finke et al., 2003). In (Earl and D’Andrea, 2007) a decomposition method is in-

troduced to solve the cooperative control problems in multi-vehicle systems. The

problem is divided into a task assignment and a task completion sub-problems. The

task completion is a dynamic control problem where the optimal control to com-

plete the assigned task for each vehicle is calculated considering its constraints. The

task assignment problem which is a combinatorial problem is solved using a branch

and bound algorithm. The alternative to this functional decomposition is a time

decomposition approach. The main idea is to solve an optimization problem seek-

ing to maximize the total expected reward accumulated by the network over a given

time horizon, and then continuously extend this time horizon forward (either period-

ically or in purely event-driven fashion). This idea, introduced in (Cassandras and

Li, 2002), is in the spirit of receding horizon (RH) schemes, which are associated

with model-predictive control and used to solve optimal control problems for which

feedback solutions are extremely hard or impossible to obtain (Cassandras and Li,

2005).

Model predictive control (MPC) or receding horizon control (RHC) is a control

solution method in which the current control action is calculated by solving a finite

horizon open-loop optimal control problem, at each sampling instant, using the cur-

rent state of the system as the initial state. This is an online time-driven solution

9

where new control values are calculated at time steps defined by the clock of the

system and the length of the time horizon of the specified optimal control problem.

The optimization yields an optimal control sequence from which the first control is

applied to the system. This is followed by a time step for which the control value

is maintained and then a sampling instant with a new optimal control problem and

new initial state. This is its main difference from conventional control which uses a

pre-computed control law. RHC enables us to solve problems where calculation of

a control law is difficult or impossible due to the complexity and uncertainty of the

problems and every state of the system has a different set of constraint on the control

(Mayne et al., 2000).

A standard optimal control problem is solved at each step of the receding horizon

control, except that it has a finite horizon in contrast to the infinite horizon problems

in H2 and H∞ linear optimal control. The RHC can provide on-line solution of the

optimal control problem for the current state of the system, rather than determining

a feedback policy that provides the optimal control for all states. The on-line solution

is obtained by solving an open-loop optimal control problem where the initial state

is the current state of the system. Determining the feedback solution, on the other

hand, requires solution of the Hamilton-Jacobi-Bellman (Dynamic Programming) dif-

ferential or difference equation which is more difficult.

In (Mayne and Michalska, 1990) the receding horizon control method is shown

to have stabilizing results for non-linear control system problems. Also in (Dunbar

and Murray, 2006) a distributed approach is formulated for receding horizon control

of multi-vehicle problems. The control problem is decoupled into sub-systems with

independent dynamics and constraints while the state of the subsystems is considered

to be completely coupled. The control updates for all vehicles is synchronous and the

receding horizon step should be small enough to insure the stability of the controller.

10

The subsystems are assumed to have complete knowledge of the prior state trajectory

of the other subsystems.

In most of the RHC classic applications the implementation is a time based

approach where the finite time horizon is a fixed value. In (Chen et al., 2010) a

time-driven receding horizon is presented for a multiple mobile formation control

using a leader-follower scheme. In (Izadi et al., 2012), a new RHC algorithm for

a group of cooperative vehicles is investigated where the communication bandwidth

is limited. The result is a decentralized RHC with communication delays. A new

approach is proposed to find the communication bandwidth for each vehicle, subject

to network bandwidth constraints, in order to improve the cooperation performance.

The proposed bandwidth allocation approach is decentralized and does not require

significant online computation and communication resources.

The idea of an event-driven controller for the uncertain multi-agent system is

to solve a new optimal control problem with a dynamic finite horizon when a new

event happens in the system. The events should be precisely defined based on the

topology of the problem and its uncertainties. Changes in the agents’ dynamic,

appearing/disappearing of points of interest in the environment, recognizing a threat,

etc are examples of these “events”. The non-periodic finite horizon at each step of

the problem needs to be defined based on the dynamics and topology of the problem.

This horizon is dynamically updated if a random event is detected while the controls

are executed.

A schematic explanation of this is shown in Fig. 1·1. In this figure the lower

time axis shows the time-driven receding horizon control. At each sampling time ti

a new optimal control problem with a time horizon of Hi is solved to find a control

sequence for that time. The first value of that sequence is called ui and is maintained

for the interval of ti to ti+1. At this time the process repeats and a new control

11

Time

t1 t2 t3 t4 t5 t6 t7 t8 t9H1 H2 H3 H4

u1 u2 u3 u4

E1

t1 H1

E2

t2 H2

E3

t3 H3

E4

t4

E5

t5 H4 H5

u1 u2 u3 u4

Figure 1·1: Time-driven and event-driven receding horizon

is calculated. In the upper time access, an event-driven receding horizon control

scheme is illustrated. A new event Ei happens at time ti and a new finite horizon Hi

is calculated. A new optimal control with finite horizon Hi is then solved to find the

control value ui which is maintained for the duration of the horizon or until a new

event happens, whichever comes first.

As an example, an event triggered cooperative control is used for the consensus

problem in (Dimarogonas and Johansson, 2009) with centralized and decentralized

approaches. In (Cassandras and Li, 2002), (Li and Cassandras, 2006b), (Yao et al.,

2010) and (Tomasson, 2011) centralized and decentralized receding horizon control

algorithms are applied to different cooperative control problems such as maximum

reward collection, data harvesting and resource allocation. In most of these applica-

tions the receding horizon control provides a trade off between the long-term against

short-term decisions in the presence of uncertainties. The finite time horizon at each

step is not of the same length and different stochastic events trigger a new time step.

12

1.3.1 Maximum Reward Collection Problem

The first problem that is considered in this dissertation is the maximum reward

collection problem (MRCP) with time varying rewards. The goal of the problem is

for N agents to collect time dependent associated “rewards” from “M” stationary

targets in a 2-D environment. The problem can involve uncertainties rooted in the

dynamics of the agents, appearance and disappearance of targets and their location or

obstacles and threats in the problem environment. In the problems considered in this

work targets carry time varying non increasing rewards and can appear or disappear

at any time. An MRCP mission is defined as collecting the maximum possible reward

from M number of targets by N number of agents in the minimum amount of time

or by a pre-defined deadline T .

In the deterministic environment if targets carry constant equal rewards, a one

agent MRCP is an instance of Traveling Salesman Problem , (Salz, 1965) and (Salz,

1966). A Traveling Salesman Problem (TSP) is where one salesman has to visit

multiple cities once and only once, starting and ending at a depot. One can also

define an m-TSP in which m salesman are cooperating to visit the cities, meaning

each city should be visited once and only once by exactly one salesman. This is also

called the Vehicle Routing Problem (VRP) which is a very important problem in

the field of distribution, transportation and logistics, (Laporte, 1992),(Dantzig and

Ramser, 1959). As a fundamental definition a VRP is the problem of “finding a set

of routes for K identical vehicles based at the depot, such that each of the vertices is

visited exactly once, while minimizing the overall routing cost” (Pillac et al., 2013).

In general form of this problem a number of vehicles with certain capacities should

gather rewards or deliver resources to customers with different values or demands.

Vehicles might have a specific time window that they can be used during that. This

is called the Vehicle Routing Problem with Time Windows. Demands or targets

13

might also be dynamic which results to problems that are generally called “Dial A

Ride Problem” and modeled as Dynamic Vehicle Routings (DVRP) .

TSP and VRP are both combinatorial problems for which finding the global

optimum is the solution of a complex combinatorial optimization. There is a vast

number of methods to solve the TSP by exact and approximate algorithms (Apple-

gate et al., 2011), (Arora, 1998). The exact solutions are normally found through

complete permutations or integer programming formulation of the problem which is

solved by decomposition and branch and bound methods. These methods are com-

putationally intensive and inhibitive for very large problem. The most well known

heuristic algorithms for TSP are the Christofides’ Algorithm (Christofides, 1976) and

Lin-Kernighan (Lin and Kernighan, 1973). Very close bounds have been found by

highly efficient heuristic solvers for big instances of the problem. Instances of more

complicated TSP formulations with constraints on the capacity of the vehicles and

unequal demands in the targets have been studied in the literature (Hernandez-Perez

and Salazar-Gonzalez, 2014) however, most of these methods would solve the problem

when no uncertainty is involved.

The VRP and DVRP literature is extensive. In (Pillac et al., 2013), a compre-

hensive review is provided which points to the computational complexity of these

problems. Beyond dynamic programming, various heuristics are described, including

methods such as Genetic Algorithms and Ant Colony Systems for different versions of

DVRPs. A broad taxonomy of solution approaches may be found in (Lahyani et al.,

2015). In (Bullo et al., 2011), a variety of VRPs is considered from a queueing theory

point of view and solution algorithms are given that provide some performance guar-

antees. In (Ekici and Retharekar, 2013), (Tang et al., 2007), a deterministic MRCP

with a linearly decreasing reward model is cast as a dynamic scheduling problem and

solved via heuristics.

14

The uncertainties in the location of targets (cities) or dynamically arriving cus-

tomers with varying demands can cause great inefficiencies in the TSP and VRP

solvers. Appearance of a new target can completely change the course of the solution

and a new instance of the problem needs to be solved.

The other class of problems is the Orienteering Problems (OP) rooted in the

sport game of orienteering (Chao et al., 1996b). In this game, each player starts at

a specified control point, visits as many checkpoints as possible and returns to the

control point within a given time frame. Each checkpoint has a certain reward and

the game’s objective is to maximize the total collected reward. The setup of the game

is as such that the player needs to decide to visit the most rewarding checkpoints in

a bounded time. (Vansteenwegen et al., 2011) provides a survey on the different

algorithms in the literature for the OP. The individual problem is a combination

of knapsack problem (KP) (Papadimitriou and Steiglitz, 1998) and the traveling

salesman problem (TSP). A mixed integer linear programming problem is formulated

for the OP where branch and bound and branch and cut are proposed for this problem

to provide upper bounds. A number of heuristic algorithms are also discussed. In

(Chao et al., 1996a) authors discuss a team orienteering problem where they propose

a heuristic solution for that. The problem is based on the orienteering game but when

multiple players are performing as a team. The heuristic solution first assigns a set

of control points to each team member and then by adding and exchanging points

between members maximizes the total reward within the time limit. In both OP and

Team OP the assumptions are that the reward at each control point is not changing

and the position of those points are known a priori.

In (Bansal et al., 2004), authors model the OP and Team OP as a Deadline-

TSP problem on a graph where the objective again is finding a path starting at

one node and visits as many nodes as possible by their deadlines. They propose an

15

O(log n)-approximation algorithm for the Deadline-TSP problem based on an approx-

imation of the point-to-point orienteering problem. They also provide an O(log2 n)-

approximation for the Vehicle Routing Problems with Time Windows, in which the

vehicles availability is a time window. Underlying assumptions like many path plan-

ning problems are that the targets are known and agents can only move on the edges

of the graph.

Because of the MRCP complexity, it is natural to resort to decomposition tech-

niques. One approach is to seek a functional decomposition that divides the problem

into smaller sub-problems which may be defined at different levels of the system dy-

namics, see (Bellingham et al., 2002), (Earl and D’Andrea, 2007). An alternative is

a time decomposition where one can use receding horizon techniques. In the context

of multi-agent systems, a Cooperative Receding Horizon (CRH) controller was intro-

duced in (Li and Cassandras, 2006b) with the controller steps defined in event-driven

fashion (with events dependent on the observed system state) as opposed to being

invoked periodically, in time-driven fashion. The method is extended into a graph

representation with a switching CRH controller in (Chini et al., 2014). A decentral-

ized version of the CRH controller is also introduced in (Li and Cassandras, 2006a).

A key feature of this controller is that it does not attempt to make any explicit

agent-to-target assignments, but only to determine headings that at the end of the

current planning horizon, place agents at positions such that a total expected reward

is maximized. Nonetheless, as shown in (Li and Cassandras, 2006b), a stationary

trajectory for each agent is guaranteed under certain conditions, in the sense that an

agent trajectory always converges to some target in finite time.

The maximum reward collection problem with linearly decreasing rewards in

deterministic environments has been previously tackled in (Ekici and Retharekar,

2013), (Tang et al., 2007) where heuristic methods are used to solve the problem as

16

a dynamic scheduling. The problem can be viewed as a discounted reward Traveling

Salesman Problem (TSP) and is the modeling platform for many of the cooperative

control problem that were discussed before.

Even though we refer to the targets as reward bearing points, the same approach

can be used in defining problems in applications such as disaster relief where the

nodes can be thought of as hazardous areas from which people have to be evacuated.

The problem then becomes one of assigning vehicles to areas to collect people and

transport them back to safety at the bases.

1.4 Event-driven Control of Multi-agent Systems

1.4.1 Data Harvesting Problem

Advances in wireless communication, embedded powerful controllers and small and

inexpensive sensors over the recent years have made wireless sensor networks(WSN)

an applicable tool in many applications. A wireless sensor network is a collection of

sensors, able to communicate between each other to perform exploration, monitoring

and surveillance. WSNs and conventional communication network are different in

design, types of equipment, and their performance metrics. The sensors in a WSN

might be mobile and able to execute functions during the sensing process. The limited

computation and power capabilities in the wireless sensor networks makes the lifetime

of the nodes be a main concern when designing control methods for them. The

main approach has been to deploy a few powerful rechargeable mobile sensors in a

network. The availability of small, cheap and non-rechargeable sensors have changed

this approach to much bigger networks with less capable nodes. A tutorial-style

overview of sensor networks from a systems and control theory perspective is presented

in (Cassandras and Li, 2005). Developments in the mobile sensors, has been followed

with abundance of cheaper drones and UAVs that are available to public for all

17

sorts of applications. They can also form networks and perform sensing, information

collection and even delivery of goods.

Although these electronic devices are capable of many tasks and inexpensive, they

have limited capabilities in communication and power. These limitations encourage

reducing the energy consumption of individual device to maximize their lifetime. We

can generally refer to these as “mobile agents” since the mobility and controllability

is a common feature among all of them in different application.

Once the task at hand is to be accomplished by a group of mobile agents, the

cooperation level is determined by the type of global and local performance measures

defined for the whole system and each agent. These measures might be only on

a global level specially when the control is going to be calculated in a centralized

fashion, can be at the agent’s level in the fully distributed control or a combination

of both.

Data harvesting and its variation minimum latency problem (Blum et al., 1994) is

the problem of gathering the data from a stationary point of interests, called “targets”,

where a direct communication path does not exist between each data generating node

and the central sink or base node. Although defined as stationary points, targets can

be assumed non-stationary in the data harvesting problem as long as some knowledge

of their movements is available. This obviously created more complexity in the control

and optimization of the system. In a sensor network, the functional life span increases

when there is more delay in delivering the data from the network nodes (Tekdas et al.,

2009), (Wei et al., 2008). This delay tolerant system needs a control scheme to deploy

the mobile nodes to gather the available data with the least delay. These mobile nodes

are called message ferries or simply ferries. The mobile nodes visit the data generation

nodes and collect the data and deliver it to the base. They might have limited buffer

sizes that needs visits to the base once the buffer is full.

18

Systems consisting of cooperating mobile agents have been continuously devel-

oped for a broad spectrum of applications such as environmental sampling (Corke

et al., 2010),(Smith et al., 2011), surveillance (Tang and Özgüner, 2005), coverage

(Zhong and Cassandras, 2011),(Chakrabarty et al., 2002),(Cardei et al., 2005), per-

sistent monitoring (Alamdari et al., 2014),(Cassandras et al., 2013), task assignment

(Panagou et al., 2014), and data harvesting and information collection (Klesh et al.,

2008),(Ny et al., 2008),(Moazzez-Estanjini and Paschalidis, 2012).

Examples of the data harvesting application include environmental sensors (Hart

and Martinez, 2006), sensors for monitoring air/water quality, traffic meters, ma-

chinery condition monitoring, utility meters, etc. In many, sensors are sparsely dis-

tributed, energy limited or bandwidth capacitated so they cannot afford long-range

wireless communications. More applications can be found in (Zhao et al., 2005) and

(Pandya et al., 2008).

There are also equivalents to this problem outside the sensor network realm, such

as in disaster planning, evacuation process and rescue operations, pickup/delivery and

transportation systems, surveillance operations using drones and UAVs. The general

theme is a network of mobile agents need to visit points of interests during the course

of the problem and perform visits to the base on a frequent basis. The base visits

can be for delivery of data/goods/people or recharge or renew power supply/fuel. For

example, the flying time span of a drone on one battery charge is limited so the flight

trajectories need to be optimized and returns to base might be scheduled for recharge

or loading/unloading.

In the data harvesting problem mobile agents are sometimes known as “message

ferries” or “data mules”Ḣaving its root in the wireless sensor networks, the problem

is normally studied on a directed or undirected graph where minimum length tours

or sub-tours are to be found. The graph topology view of the problem utilizes many

19

routing and scheduling algorithm from wireless sensor networks, see (Akkaya and

Younis, 2005),(Liu et al., 2011) and references therein. The main advantage of the

graph topology is the ability to adjust to environment constraints. Movements inside

a building or within a road network are examples for which a graph topology is very

suitable. These methods have several drawbacks, they are generally combinatorially

complex, they treat agents as particles (hence, not accounting for limitations in mo-

tion dynamics which should not, for instance, allow an agent to form a trajectory

consisting of straight lines), and they become computationally infeasible as on-line

methods in the presence of stochastic effects such as random target rewards or failing

agents since the graph topology has to be re-evaluated as new information become

available. As an example, in (Chang et al., 2014) algorithms are proposed for pa-

trolling target points with the goal of balanced time intervals between consecutive

visits. A weighted version of the algorithm improves the performance in cases with

unequally valued targets. However, in this scenario the data need not be delivered

to a base and visits to a recharging station are only necessary if the data mules are

running out of energy.

On the other hand, the problem can be viewed as 2-D or 3-D trajectory optimiza-

tion problem, where the mobile agents are freely (or with some constraints) moving

in the space and visits the targets by getting close to them with some criterion. For

example the targets can be assumed to have a sensing range within which the mobile

agent can initiate a wireless communication with them and exchange data. In prob-

lems where a physical visit is needed such as rescue missions, the mobile agent has to

visit the exact target points and perform the task. These trajectories not necessarily

consist of straight lines as opposed to in the graph. The trajectories can adjust to un-

certainty in the target locations when the exact locations are not necessarily known.

Also, adjusting to limitation in agent’s mobility is another advantage. Constraining

20

trajectories to obstacles or environment’s boundaries might not be as straight forward

but is possible. In (Ny et al., 2008) the problem is viewed as a polling system with a

mobile server visiting data queues at fixed targets. Trajectories are designed for the

mobile server in order to stabilize the system, keeping queue contents (modeled as

fluid queues) uniformly bounded.

Another benefit of modeling the problem as a trajectory optimization is the

ability to parameterize the trajectories with different type of functional representa-

tions. The parametric class that is considered for each problem might be different

but results in optimization problems with fewer number of controls. If the paramet-

ric trajectory family is broad enough, we can recover the true optimal trajectories;

otherwise, we can approximate them within some acceptable accuracy. Moreover,

adopting a parametric family of trajectories and seeking an optimal one within it has

additional benefits: it allows trajectories to be periodic, often a desirable property,

and it allows one to restrict solutions to trajectories with desired features that the

true optimal may not have, e.g., smoothness properties to achieve physically feasible

agent motion. In (Lin and Cassandras, 2015), the parametric trajectory planning

method is used for a persistent monitoring problem. In this work, the problem is cast

as an optimal control resulting in a two point boundary value problem. Solving the

TPBVP provides some structures for the optimal control policy which is then used

in the parametric trajectory design which can solve larger instances of the problem

compared to the TPBVP.

1.4.2 Optimal Control Methods

Optimal Control theory is the optimization method that deals with finding control

policies for a control system for which the optimality criterion is defined through a

cost functional. By minimizing the cost that is a function of the control variables

and the state of the system one can achieve control policies that satisfy an optimality

21

criterion (Pontryagin, 1987).

In general when the optimization problem is defined for a continuous time domain

the main challenge is that the size of the control policy is infinite. In addition at each

time instance there might be an infinite size feasible control set that one can choose

from. This calls for rigorous mathematical methods. On the other hand, one can

discretion the problem into time intervals and find policies that provide a control

value for each time interval. These cases might be solved with conventional nonlinear

optimization methods.

As in most cases the optimal control the cost functional is highly nonlinear,

analytical solutions do not exist for the problem. In these cases numerical methods

should be used to obtain a solution. Pontryagin’s Maximum Principle (PMP) (Bryson

and Ho, 1975) provides a necessary condition to solve for the optimal control policy.

Calculus of variation which is the basics of optimal control theory can be used to solve

for the interior solutions but in many applications the decision variables are bounded.

PMP deals with these cases and uses the Hamiltonian analysis by minimizing the

Hamiltonian function over all feasible controls. This optimization problem results

into a Two Point Boundary Value Problem (TPBVP) for which the state and costate

are known at initial and final times respectively.

In the Data Harvesting problem which was introduced, we use optimal control

method to initialize our analysis for a deterministic setting. A TPBVP is defined and

solved numerically. The solution provides special structure on the control of the agents

in the environment. Studying the deterministic problem leads to understandings of

the control policy structure that can be further extended to a stochastic environment.

22

1.5 Thesis Contributions

1.5.1 Event-driven Receding Horizon Control of Multi-agent System

In this thesis, for the first part we focus on application of the event-driven Receding

Horizon Control method in the control of multi-agent systems. We design and imple-

ment a new Cooperative Receding Horizon (CRH) controller for a class of cooperative

multi-agent systems continuing on some of the ideas in (Li and Cassandras, 2006b).

The proposed controller design trajectories for a set of agents to cooperatively perform

a maximum reward collection from a set of stationary targets with random arrival

times and time-variant rewards.

Multi-agent systems which can be considered within this framework are cooper-

ative path-planning, resource allocation, reward maximization, data harvesting, etc.

All of these commonly require solutions that are on-line specially in situations with

limited computation capacity, uncertain environment and real-time constraints.

We propose a centralized cooperative receding horizon control method that is

based on an event-driven time decomposition of the control problem. We apply

this scheme to the Maximum Reward Collection Problem (MRCP) which was put

forward before. The problem environment is assumed to be uncertain with possible

new targets arriving at any time, the agents can have a limited sensing range and they

may detect targets at certain distances. The modeling framework can also account

for threats, obstacles and agent’s failures during the mission.

The controller solves a finite horizon optimization problem that maximizes the

total expected reward collected by all agents at the end of the mission, while moving

forward the finite horizon and re-solving a new instant of the optimization problem.

We consider point-like agents that have a simple dynamic and move with a constant

speed at all times. The controller determines agent’s trajectories by calculating the

heading for each agent at any time.

23

In the spirit of receding horizon methods, the optimal control is calculated for a

planning horizon and is executed for a shorter action horizon. This action horizon is

dynamically changing to account for new events happening during the mission. This

fact results in a new optimization problem to be solved at any time a new piece of

information becomes available. This enables us to handle problems with uncertain

environment where new information is due anytime during the mission with no prior

information on the arrival time of the information.

The CRH controller’s performance measure at each time step is the expected total

collected reward by the end of the mission. The mission as mentioned before can end

at a specific time T , or when no more target is available. It should be noted that the

optimization problem involved does not attempt to make any explicit agent-to-target

assignments, but only to determine headings that, at the end of the current planning

horizon, would place the agents at positions such that a total expected reward is

maximized.

The controller in this work is built on the basis of the previous results from

(Li and Cassandras, 2006b). Our new methodology enhances the performance of

the previously designed controller while addressing some systematic shortcomings of

the previous one. The first shortcoming of the previous CRH controller is that the

expected collected reward in the performance measure is calculated as an unattainable

loose upper bound. Meaning at each time step the controller assumes agents would

reach every target through the minimum distance and minimum time. This yields to a

loose lower bound on the expected visiting time for each target and an upper bound

on its reward. In the present work, we try to improve this by using an estimated

collected reward through an estimated path for each agent. We assume each agent

would visit the targets in a shortest path order in which the metric for distance is

a novel travel cost factor. This factor will be defined based on each targets reward,

24

its decline rate and the concentration of reward around it. The modified expected

reward estimation improves the final result of the maximization problem significantly.

The new CRH controller also handles instabilities that were observed in the

previous work (Cassandras and Li, 2002). There is still no direct target to agent

assignment in this method however, at each time step a set of targets are defined as

active targets for each agent. These will be the potential next visits for that agent.

The active target set would be re-calculated at any event in the system so we ensure

no target assignment before the agent is very close to a target where at that point

the active target set becomes a singular set.

As a main outcome of the new design, in the proposed CRH control scheme, the

feasible set for the heading of all agents at any time is reduced to a discrete set of

headings. This feature reduces the optimization problem to a simple comparison over

a finite set of controls. We prove that given our specific expected collected reward

in the objective function definition, the optimal decision for the agents is to move

toward one of the “active targets”.

It is possible to extend the same framework to similar cooperative control prob-

lems such as resource allocation and data harvesting problems. In the resource alloca-

tion problem which is an instance of VRP/DVRP which were introduced previously,

points of interests in the mission space have demands that should be satisfied by the

resources located in a depot. Vehicles with limited capacity would take the resources

to the demand points. Uncertainties such as random arrival of demands, unknown

demands amount, agent failure, obstacles and other random event might be handled

similar to the maximum reward collection problem.

1.5.2 Event Excitation in Multi-agent Systems

The premise of event-driven methods application in any multi-agent optimization

problem is that the events involved are observable so as to “excite” the underlying

25

event-driven controller. However, it is not always obvious that these events actually

take place under every feasible control: it is possible that under some control no

such events are excited, in which case the controller may be useless. In such cases,

one can resort to artificial “timeout events” so as to eventually take actions, but

this is obviously inefficient. Moreover, in event-driven optimization mechanisms this

problem results in very slow convergence to an optimum or in an algorithm failing to

generate any improvement in the decision variables being updated.

In this work, we address this issue of event excitation in the context of multi-agent

systems. In this case, the events required are often defined by an agent “visiting”

a region or a single point in a mission space S ⊂ R2. Clearly, it is possible that

such events never occur for a large number of feasible agent trajectories. This is

a serious problem in trajectory planning and optimization tasks which are common

in multi-agent systems seeking to optimize different objectives associated with these

tasks, including coverage, persistent monitoring or formation control (Schwager et al.,

2009; Cassandras et al., 2013; Cao et al., 2011; Oh and Ahn, 2014; Yamaguchi and

Arai, 1994; Desai et al., 1999; Ji and Egerstedt, 2007; Wang and Xin, 2013). At

the heart of this problem is the fact that objective functions for such tasks rely on

a non-zero reward (or cost) metric associated with a subset S+ ⊂ S of points, while

all other points in S have a reward (or cost) which is zero since they are not “points

of interest” in the mission space. We propose a novel metric which allows all points

in S to acquire generally non-zero reward (or cost), thus ensuring that all events are

ultimately excited. This leads to a new method allowing us to apply event-based

control and optimization to a large class of multi-agent problems. We will illustrate

the use of this method by considering a general trajectory optimization problem in

which Infinitesimal Perturbation Analysis (IPA) (Cassandras and Lafortune, 2006) is

used as an event-driven gradient estimation method to seek optimal trajectories for

26

a class of multi-agent problems where the agents must cooperatively visit a set of

target points to collect associated rewards (e.g., to collect data that are buffered at

these points.) This defines a family within the class of Traveling Salesman Problems

(TSPs) (Applegate et al., 2011) for which most solutions are based on techniques

typically seeking a shortest path in the underlying graph. These methods have sev-

eral drawbacks: (i) they are generally combinatorially complex, (ii) they treat agents

as particles (hence, not accounting for limitations in motion dynamics which should

not, for instance, allow an agent to form a trajectory consisting of straight lines),

and (iii) they become computationally infeasible as on-line methods in the presence

of stochastic effects such as random target rewards or failing agents. As an alter-

native we seek solutions in terms of parameterized agent trajectories which can be

adjusted on line as a result of random effects and which are scalable, hence computa-

tionally efficient, especially in problems with large numbers of targets and/or agents.

This approach was successfully used in (Lin and Cassandras, 2015), (Khazaeni and

Cassandras, 2015).

1.5.3 Event-driven Trajectory Optimization in Multi-agent Systems

In the data harvesting problem the task is not completed by collecting the data from

the data generating points. Data should be collected and delivered to the sink node

or the base for the task to be completed. The main goal is to collect and deliver the

data in the most efficient way. The general optimization problem is formulated as an

optimal control problem. We aim to optimize a two-dimensional trajectory for each

agent, which may be periodic and can collect data from a target once the agent is

within a given range from that target.

The system at hand is a stochastic hybrid system with discrete modes defined

depending on the dynamics of the agent and targets. We note that the specification

of an appropriate objective function is nontrivial for the data harvesting problem,

27

largely due to the fact that the agents act as “mobile servers” for the data sources

and have their own dynamics. Since the control is applied to the motion of agents,

the objective function must capture the agent behavior in addition to that of the

data queues at the targets, the agents, and the base. The solution of this optimal

control problem (even in the deterministic case) requires a Two Point Boundary

Value Problem (TPBVP) numerical solver which is clearly not suited for on-line

operation and yields only locally optimal solutions. Thus, the main contribution of

this part is to formulate and solve an optimal parametric agent trajectory problem.

In particular, we represent an agent trajectory in terms of general function families

characterized by a set of parameters that we seek to optimize, given an objective

function. We consider elliptical trajectories as well as the much richer set of Fourier

series trajectory representations. We demonstrate the application of Infinitesimal

Perturbation Analysis for this hybrid system (Cassandras et al., 2010) to estimate

gradients of the objective function with respect to the trajectory parameters and

subsequently obtain (at least locally) optimal trajectories.

This approach also allows us to exploit (i) robustness properties of IPA to allow

stochastic data generation processes, (ii) the event-driven nature of the IPA gradient

estimation process which is scalable in the event set of the underlying hybrid dynamic

system, and (iii) the on-line computation which implies that trajectories adjust as

operating conditions change (e.g., new targets).

1.6 Outline of This Thesis

In chapter 2 we will formally introduce MRCP problem with detailed mathematical

formulation. A brief review of the previous CRH controller is given with explanations

of some of its shortcomings. After that, the new CRH controller is introduced along

with all the elements of the new design. The chapter ends with several simulation

28

results with comparisons presented with the previous CRH controller and also with

TSP solutions in case of one agent scenarios.

In chapter 3 we propose a general framework for static and dynamic multi-agent

systems. We focus our interest on systems with finite number of point of interests

studying the application of event-driven optimization methods in such systems. We

show that in some cases due to no event excitation , the application of event-driven

methods to such problems will not be straight forward. We then move to introduce a

new metric to address this issue. Some simulation examples are also provided in this

chapter for a data collection problem.

In chapter 4 we apply the event-driven optimization method to a parametric

trajectory optimization for data harvesting problem.

In chapter 5 conclusions of the current work is presented continued with some

future direction for possible extensions and several new paths of work.

29

Chapter 2

Maximum Reward Collection Problem

2.1 Problem Description

The Maximum Reward Collection Problem (MRCP) is a dynamic optimization prob-

lem which consists of multiple agents collecting a set of fully/partially known targets

with unequal time-dependent rewards all located in a compact space S. The final

objective is to maximize the total collected reward from all the targets. The available

time for visiting these targets may be limited by a mission deadline, where not all the

targets might be visited and the optimal solution should involve picking the optimal

subset of targets to be visited. Alternatively it can be an open ended problem where

all targets will be visited and the goal is to collect the most possible reward. Notice

that considering an uncertain environment and also time-dependent rewards for the

targets makes standard TSP solution algorithm not applicable to this problem. Even

in the absence of any uncertainty, the TSP algorithm are not applicable to problems

with non uniform time-dependent rewards.

We define a mission as collecting the maximum possible total reward from M

number of targets by N number of agents in the minimum amount of time or by a

pre-defined mission deadline T . Upon collecting rewards from all targets, the reward

is then delivered to a common point defined as the Base or Depot whose location is

denoted by z ∈ S. If there is no target left, every agent heads back to the base.

Events happening during a MRCP mission can be controllable or random. Col-

lecting a target when the agent is going towards it, is a predictable and controllable

30

50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

t

φ
(t

)

Figure 2·1: Black Curve: Di = 200, αi = 0.2, β = 0.1 Red Curve:Di =
200, αi = 0.2, β = 0.01 Blue Curve:Di = 200, αi = 1

event. Random events are due to the uncertainties rooted in the dynamics of the

agents, random appearance and disappearance of targets, changes in their location,

obstacles and threats in the problem environment. The event based CRH controller

handles these random events by re-solving the optimal control problem at the time

of any event.

A finite set of M points T = {1, ...,M} indexed by i in the mission space denotes

the targets or visiting points. Target i’s reward is denoted by λiφi(t) where λi is the

initial reward and φi(t) ∈ [0, 1] is a non-increasing discount function. The location

of each target is denoted by yi ∈ S. The special case of φi(t) = 1 creates targets

with fixed rewards. By using the right discounting function we can incorporate any

type of constraints such as hard or soft deadlines for collecting any of the targets.

A more elaborate example of the discounting function which incorporates deadline

for the rewards by introducing a linear and exponential decline of the reward of the

target is shown below:

φi(t) =

{
1− αi

Di
t if t ≤ Di

(1− αi)e−β(t−Di) if t > Di
(2·1)

31

The target’s reward is declining linearly before the deadline Di and exponentially

after that. αi is the linear decline factor for target i and β is a constant value that

changes the rate of the exponential decline. Figure 2·1 shows three examples of the

discounting function φ(t) where the deadline Di = 200, The red and black curve has

the same linear decline while the black one has a rapid exponential decline to model

a hard deadline and the red curve shows a more gradual decline after the deadline

Di. The blue curve is a linearly decreasing reward with the same deadline Di = 200

and no exponential decline.

There is N agents in the mission, A = {1, ..., N} indexed by j. Location of

the agents is denoted by xj(t) ∈ S. Each agent has a constant speed of Vj and the

controllable value for each agent at time t is its heading uj(t). The velocity of the

agent is then defined using the heading uj(t) and it’s speed Vj as

vj(t) = Vj

[
cos(uj(t))
sin(uj(t))

]
(2·2)

Each agent can head to a set of feasible directions Uj(t) at any location and time. We

also assume each agent can change its heading simultaneously so the agent’s dynamic

properties are not a limiting issue in the problem.

Distance Metric

The distance metric d : S ×S → R for each mission is defined based on the topology

of S. In general, we denote the real valued distance metric d(x, y) as the length of

the shortest path between points x and y ∈ S. The distance metric that is defined

for each topology is different and should inherit the properties of the mission space.

In order to ensure that the agents will eventually collect the targets in finite

time, one assumption that we have to make is that each target has a capture radius

or size. Once an agent is within a specified finite distance to a target it can collect

32

1 2

1

2

3

4

5

B

Figure 2·2: Sample mission space with 2 agents (Black circles) and 5
targets (Blue squares) and one base (Red triangle)

the reward from that target and move on with the rest of the mission. Assuming a

size si for each target i, we define that agent j collects target i at time t if and only

if d(xj(t),yi) ≤ si.

2.1.1 Mission Space Topology

Euclidean Topology

Mission spaces can have different topologies within the MRCP work frame. In a

Euclidean topology, the mission space S is a subset of R2. In Figure 2·2 a sample of

the Euclidean mission space is shown where the red triangle in the middle shows the

base or depot. The black circles show the agents 1 and 2. Five targets are shown

with blue squares. Figure 2·3 shows a similar mission space where some parts of it

are areas that contain obstacles where agents are not supposed to pass through.

33

1 2

1

2

3

4

5

B

Figure 2·3: Sample mission space with filled blue regions as obstacles

In the Euclidean topology, the feasible headings Uj(t) = [0 2π], ∀t for each

agent with no obstacle in the mission space. If there is any obstacles that would

block some of the directions. Also if there is no obstacles in S the distance metric

d(x, y) is a simple Euclidean distance while if there is any obstacles in the set S the

possible shortest path that doesn’t pass through the obstacles creates the distance

function.

Graph Topology

In a graph topology mission, the mission space S is a (directed) graph G(E, V) where

the set E = {1, ...,M} + {B} denotes the graph nodes or the target set plus the

base location, {B}. Agents can only move on the edges of the graph in the set V .

The feasible set of headings for each agent at any point is defined by the available

(directed) edges at that point. A special case of the graph topology is a grid where

at each point a fixed set of headings is available to each agent. In a (directed) graph

G(E, V) the distance d(u, v) is defined as the sum of the weights on the (directed)

34

edges that build the shortest path between u and v.

2.2 An Event-driven Optimal Control View

The complete solution of MRCP is sequences of headings for all agents and syn-

chronous heading switching times. We define a policy π as a vector [u, ξ] where

ξ = [ξ1, ξ2, ξ3, ..., ξK] are the switching time intervals that headings are maintained

for. The switching time tk+1 =
∑k

l=1 ξl, where t1 is set to 0. The headings u =

[u1,u2,u3, ...,uK] where uk = [u1(tk), ..., uN(tk)]
′ is the vector of all the agents’ head-

ing at time tk. With the number of targets being bounded we can say with a finite

number of switching, we visit all targets in the mission space. Each switching time tk

is either the result of a controllable event like visiting a target, or an uncontrollable

event like an agent’s failure or a new target appears. This is a complex stochastic

control problem where the state space X is the set of all possible location of agents

Xk = [x1(tk), ...,xN(tk)] and targets Yk = [y1, ...,yMk
]. Assuming Tk is the set of un-

visited targets at time tk and ‖Tk‖= Mk, The complete state of the problem at time

tk is (Xk,Yk) ∈X . With the policy π defined previously, we define the optimization

problem P as:

P : max
π

K∑
k=1

Rπ(tk,Xk,Yk) (2·3)

where

Rπ(tk,Xk,Yk) =

Mk∑
i=1

N∑
j=1

λiφi(tk)1{d(xj(tk),yi) ≤ si} (2·4)

Defining any time a target is visited as a controllable event, any visiting time

automatically is a switching time. In a completely deterministic problem there is

no need to switch heading unless a target is visited but in an uncertain mission the

switching times are not limited to these events. We define a subset of {t1, ...tK} as

τ = [τ1, τ2, ..., τM], M ≤ K so that τi denotes the time target i is collected. τ is

35

not a monotonic sequence and targets can be picked up at any order. σπ is defined

as a permutation of {1, 2, ..,M} to be the order in which the targets are collected

under policy π. We can sort the vector τ into [τσπ(1), τσπ(2), ..., τσπ(M)] as the ordered

switching times at which one target is collected. Now another formulation of (2·3) is:

max
π

M∑
i=1

λiφi(τi(σπ(i))) (2·5)

Solving problem P for the complete policy π is a complex stochastic control problem.

Instead let’s solve an optimal control for one step of the policy (uk, ξk). Defining the

immediate reward as the reward collected during ξk period of time, and the rest of

the reward as an aggregated over t > tk+ξk. The optimality equation of this problem

is:

J∗(tk,Xk,Yk) = max
uk,ξk

(JI(tk,Xk,Yk,uk, ξk) + J∗(tk+1,Xk+1,Yk+1)) (2·6)

where J∗(tk,Xk,Yk) denotes the maximum possible total reward to be collected at

time tk with (Xk,Yk) be the current state of the problem and JI(tk,Xk,Yk,uk, ξk) is

the immediate reward collected in the interval of (tk, tk+1] with length ξk. Hereunder,

we for brevity, we are dropping the Xk and Yk from the arguments list.

Had we known the switching times ξk a priori, the optimization problem could

be possibly solved using dynamic programming(DP) method starting from a terminal

state. The terminal state are when there is no target left in the mission space. But

having the switching intervals ξ as part of the control parameters is the main issue in

solving (2·6) using DP. This issue and also the size of the state space of the problem,

proves DP to be an impractical solution method for this problem. We instead switch

to a forward moving sequential optimization scheme based on the receding horizon

control method.

We assume at time step tk we are given a planning horizon Hk. This planning

horizon allows us to calculate the next switching time tk+1 = tk + Hk and define

36

an optimal control problem for the interval (tk, tk + Hk]. The finite horizon optimal

control problem is solved to find the control uk. Maintaining this control for an action

horizon hk, a new optimization problem is re-solved at tk+1 = tk +hk or earlier if any

random event happens. We define the optimization problem Pk as:

Pk : J∗(tk, Hk) = max
uk

(JI(uk, tk, Hk) + J∗(tk+1, Hk+1)) (2·7)

J∗(tk, Hk) denotes the maximum total reward that is possible to be collected when

we are at time tk and JI(uk, tk, Hk) is the immediate reward that can be collected in

the interval of (tk, tk + Hk]. This immediate reward is zero if the agents don’t visit

any target after Hk otherwise it is the reward of as many targets that are collected

in (tk, tk + Hk]. Obviously J∗(tk+1, Hk+1) is also the maximum total reward that is

possible to be collected at time tk+1. Notice that here the maximization is only on

uk compared to the original problem where the total reward was maximized on the

complete control policy.

2.3 Review of The Previous CRH Controller

In this section we discuss the previous CRH controller introduced in (Li and Cassan-

dras, 2006b) and related works. We bring up the limitations of this approach and

will present the methods for handling them in the next sections. Here we review the

cooperation scheme and planning horizon calculation that will also be used in this

work.

2.3.1 Cooperation Scheme

In (Li and Cassandras, 2006b), the agents divide the mission space into a dynamic

partition at each step of the mission. The CRH controller does not assign a target to

an agent in any step. All agents are responsible for all targets but the degree of this

37

responsibility depends on the relative proximity of that agent to each target.

Depending on the cooperation level, A neighbor set is defined for each target

point which includes the b closest agents to that target. These agents will be the

only ones that are responsible for that target until another agent moves closer in the

future. Assuming b = 2, then at each time only two of the agents will share the

responsibility of any target, obviously these will be the two closest agents to that

target.

Defining cij(t) = d(yi,xj(t)) be the direct distance between target i and agent j

at time t, let Bl(yi, t) be the lth closest agent to target i at time t. Formally,

Bl(i, t) = argmin
j∈A,j 6=B1(i,t),...,j 6=Bl−1(i,t)

{cij(t)} (2·8)

So the neighbor set is:

βb(i, t) = {B1(i, t), ..., Bb(i, t)}. (2·9)

Based on this neighbor set a relative distance function is then defined for all agents

in the mission :

δij(t) =

cij(t)∑

k∈βb(i,t) cik(t)
if j ∈ βb(i, t);

1 else.

(2·10)

A value of b = 2 is used in the previous and current work. As a direct result from

the definition, if the agent is not one of the two closest agents to one target assuming

b = 2 then the relative distance is set to 1 and otherwise is less than 1.

The reward that will finally be collected from a target is viewed as an expected value

of the reward given that it’s collected by either of the agents in its neighbor set. To

calculate this expected value a probability function is defined. This function measures

the probability of the target being collected by a particular agent.

Probability function p(δij(t)) is defined as below and named relative proximity func-

38

Figure 2·4: Cooperative partitions for 4 agents, location shown with
black dots - ∆ = 0.5 : Blue - ∆ = 0.35 : Magenta - ∆ = 0.25 : Green
- ∆ = 0.05 : Red

tion in (Li and Cassandras, 2006b).

p(δij(t)) =

1, if δ ≤ ∆
1−∆−δ
1−2∆

, if ∆ ≤ δ ≤ 1−∆

0, if δ > 1−∆
(2·11)

Here, ∆ ∈ [0, 1
2
) defines the level of cooperation between the agents. It can also be

viewed as a “capture radius” around each agent. By increasing the ∆ from 0 to 1
2

the

agents will take full responsibility for more targets and we generate less cooperation.

In other words each agent takes on full responsibility for target i if δij(t) ≤ ∆. On

the other hand, when ∆ = 0 no matter how close an agent is to a target, the two

agents are still responsible for that target. If ∆ = 1
2

then the closest agent is always

responsible and no cooperation happens between the two agents. In Figure 2·4 the

cooperation regions and capture radius are shown for different values of ∆, (Li and

Cassandras, 2006b). In this figure as an example, the green curves correspond to the

∆ = 0.25. For each of the four agents, if a target is inside their corresponding green

39

curve the value of p(δij(t)) = 1 meaning that agent is fully responsible for that target

and no other agent would see that target. The region outside the green curves is the

cooperation region. If a targets is in the cooperation region, for the two closest agents

we have 0 < p(δij(t)) < 1. This explanation applies to the red and magenta curves

but the cooperation region is larger and smaller respectively. It can be noted that in

the case of ∆ = 1
2

the regions show the Voronoi tessellation (Okabe et al., 1992) of

the mission space with the location of the agents to be the center of the Voronoi tiles.

There is no cooperation region in this case and each agent is fully responsible for the

targets within their own Voronoi tile.

An intuitive way to think about this probability function is that if a target is

much closer to one of its neighboring agents than the second one, it will be collected

by that agent with a higher probability. However if the agents are equally distanced

from the target the fate of the system will be determined by other targets that are

neighbor to those agents. This ensures that there is no target to agent assignment

in this method. In fact the decision on which agent visits each target is left until

the very last moment and can change if a new event happens in the mission space.

This fact helps in the stochastic versions of the problem where targets can die or new

targets can appear at any time and the location of the targets are not known prior

to the beginning of the mission.

2.3.2 Planning and Action Horizons

In (Li and Cassandras, 2006b) Hk is defined s the shortest time until the first control-

lable event happens in the mission. This is the earliest time that one of the agents

can potentially visit one of the targets, equation (2·12). This definition of planning

horizon for the CRH controller ensures no controllable event can happen during this

40

Hk
xjl

Figure 2·5: Calculation of Planning Horizon Hk

horizon. The process is shown in Figure 2·5.

Hk = min
l∈Tk
{d(xj(tk),yl)

Vj
} (2·12)

The CRH control calculated at tk is maintained for an action horizon hk ≤ Hk. In (Li

and Cassandras, 2006b) hk is defined with two factors. If a random event happens at

te ∈ (tk, tk +Hk] then hk = te − tk Otherwise hk = Hk
2

unless Hk ≤ r where hk = Hk.

Here r is a small threshold to discourage extremely small action horizons.

2.3.3 Limitations of the Previous CRH controller

The controller in the previous works (Li and Cassandras, 2006b) and (Li and Cas-

sandras, 2003) has some limitations that are addressed in this work with new modi-

fications.

Instabilities in Agent’s Trajectory:

The objective function in (Li and Cassandras, 2006b) is modeled as a potential func-

tion, minimized in order to maximize the total reward. It is assumed all minima are

at the targets locations (Condition C in (Li and Cassandras, 2006b)). If this assump-

41

tion is not holding the agent’s are pushed toward the weighted center of gravity of

all the targets. This can happen specifically in missions with some sort of symmetry,

leading to oscillatory behavior of the agents. As an example in Figure 2.14(a) the

previous CRH controller with one agent is shown while the agent oscillates between

three targets with equal rewards. The agent goes toward target 3 but is attracted to

the center of gravity of the three targets. This point does not fall on a target loca-

tions and results in instability. The problem was addressed in (Li and Cassandras,

2006a) by introducing a heading change cost factor C. This can prevent some of the

instabilities but there is no guarantee that it helps the optimality of the results. Also

the parameter C has to be tuned accordingly for each mission. A new method for

calculating the expected reward is introduced to handle this issue.

Hedging and Mission Time:

The agent’s trajectories in (Li and Cassandras, 2006b) tend to move the agents in

positions close to targets but not exactly towards them. This hedging effect is helpful

in handling uncertainties but it can create excessive loss of time specially when re-

wards are declining fast. This can be addressed by more direct movements toward the

target but re-evaluating the control frequent enough that uncertainties in the mission

space can be handled. The feasible control set in previous CRH is a continuous set,

by reducing this continuous set to a discrete set of control values we can eliminate

unnecessary hedging. This also reduces the complexity of the optimal control problem

at each time step and allows for solving the problem by a finite number of evaluations.

Estimation of the Expected Reward:

In the previous CRH method introduced in (Li and Cassandras, 2006b), the estimated

collection times are assumed to be the earliest time agent j would reach target i, given

the control is uk at time tk and is maintained for Hk. τ̃lj(uk, tk, Hk) is calculated as

42

an estimated collection time ∀l ∈ Tk:

τ̃lj(uk, tk, Hk) = tk +Hk + d(xj(tk +Hk, uj(tk)),yl) (2·13)

There is no way the agents can visit all the targets at these collection times, therefore

(2·13) is a lower bound estimation resulting in a loose upper bound estimation of

the expected total reward. This estimation method is improved by a more realistic

projection of agent’s future moves.

2.4 The New CRH Controller

In this section a modified version of the CRH controller introduced in (Li and Cas-

sandras, 2006b) is presented. In problem Pk in (2·7), at any time step tk, we define

the position of the agent in the next time step denoted by xj(tk + Hk, uj(tk)) as a

function of tk, Hk and uk. Assuming that Vj = 1 for all agents, the feasible set for

xj(tk +Hk, uj(tk)) is defined as:

Fj(tk, Hk) = {w ∈ S| d(w,xj(tk)) = Hk} (2·14)

In a Euclidean mission Fj(tk, Hk) is the circle centered at xj(tk) with radius Hk. Let

the binary function qi(xj(t)) = 1{d(xj(t),yi) ≤ si} show if agent j visits target i at

time t. We define the immediate reward at tk:

JI(uk, tk, Hk) =
N∑
j=1

Mk∑
l=1

λlφl(tk +Hk)ql(xj(tk +Hk, uj(tk))) (2·15)

Following the definition of τi as the collection time of target i in (2·5), we define τ̃ij

as the estimated collection time of target i by agent j. Notice that here τ̃ij > tk is an

estimated time so any of the agents in the mission space has a chance to visit target

43

i. Then at time tk we can formulate an estimation of the J∗(tk+1, Hk+1) as below:

J̃(uk, tk+1, Hk+1) =
N∑
j=1

Mk+1∑
l=1

λlφl(τ̃lj(uk, tk, Hk))ql(xj(τ̃lj(uk, tk, Hk))) (2·16)

We previously mentioned that the previous approach used a lower bound for estimat-

ing τ̃ij. We try to improve this estimation by introducing a new parameter called

travel cost for each target. This parameter combines the distance and reward of a

target with a local sparsity factor. Using the travel cost factor, we introduce the ac-

tive target set. The active targets definition allows us to shrink the infinite dimension

feasible control set at each time step to a discrete set of controls. Finally we introduce

the look ahead and aggregate algorithm with single and multiple steps.

2.4.1 Travel Cost Factor:

We define parameter ζi(tk) for each target i measuring the sparsity of rewards around

target i. Assuming that the upper-bounded deadline Di shows the time the reward is

zero, the average reward’s rate of decay is then equal to λi/Di. Let set {1, 2, ..., K} be

the indices for K closest targets to target i at time tk. We define ζi(tk) as a sparsity

indicator around target i as:

ζi(tk) =
K∑
l=1

γl
d(yi,yl)

λl/Dl

(2·17)

ζi(tk) is a function of time because the K closest targets change during time while

targets are collected. A larger ζi(tk) shows target i is located in a sparse area and

vice versa. γ ∈ [0 1] is a parameter used to shift the weight between the K targets.

K is chosen based on the number of targets in the mission space and the computation

capacity of the controller. The main idea of this parameter comes from (Schneider

et al., 2010) where it is used to solve TSP problems with clustering. For any point in

44

x ∈ S, we define a travel cost to target i at time tk :

ηi(x, tk) =
d(x,yi)

λi/Di

+ ζi(tk) (2·18)

The travel cost has a direct relationship with the distance, so the farther the target

the more costly is the collection of that target. Also the reverse relationship with the

target’s rate of decay implies that the faster a target’s reward is decaying, the less

the travel cost is. ζi(tk) is added to this cost so if a target is in a sparse area the

travel cost of that target is higher.

2.4.2 Active Targets

We define a subset of the targets to be the possible next stops for each agent at

time tk. This set only defines the candidates for the next collection the agent won’t

necessarily visits them in the next step.

Sj(tk, Hk) = {`|∃ x ∈ Fj(tk, Hk) s.t. ` = argmin
i∈Tk

ηi(x, tk +Hk), i = 1, 2, ...,Mk}

(2·19)

This set of targets is called the Active Target Set and the definition in (2·19) implies

that a target is an active target if and only if it has the smallest travel cost from at

least one of the points on the Fj(tk, Hk). This means each point in the set Fj(tk, Hk)

corresponds to one of the active targets and so does each feasible heading. Heading

uj(tk) corresponds to active target l if and only if:

l = argmin
i∈Tk

ηi(x(tk +Hk, uj(tk)), tk +Hk) (2·20)

Assuming that the distance metric d(x, y) is a continuous function, The correspon-

dence between the active targets and the feasible points set results in partitioning of

the set Fj(tk, Hk) into several arcs where each arc corresponds to one of the active

targets. The common feature of all the points in one arc is that they correspond to

45

x1(t)

y1

y2

y3

y6

y4
y5

Hk

Figure 2·6: The Active Target Set for agent 1: S1(x1(tk), Hk) =
{1, 2, 4, 5}

the same target with the least travel cost.

In Figure 2·6 an instance of the problem is illustrated. To be able to show the

active targets we assume γ = 0 in (2·18) and the target have the same λi and φi(t).

These assumptions enables us to reduce the travel cost factor to a simple Euclidean

distance. Note that these assumptions are only for the illustration purposes in Figure

2·6 and are not carried over in the rest of the analysis.

In this simplified case, agent “1” has four active targets in its active target set,

S1(tk, Hk) = {1, 2, 7, 8}. The feasible set is then divided into four partitions (arcs),

each is associated with one of the active targets.

Active Target Set Construction

For each target l in the set Tk and each agent j we define the set Lk(xj(tk), l) to be

the set of points x ∈ S that defines the shortest path from xj(tk) to yl. In a Euclidean

mission space we can define this set as a convex combination of xj(tk) and yl.

Lk(xj(tk), l) =
{

x ∈ S|x = (1−m)xj(tk) +myl;m ∈ [0 1]
}

(2·21)

46

The intersection of these two sets denotes the set of closest points to target l in the

feasible set Fj(tk, Hk):

Cl,j(tk, Hk) = Lk(xj(tk), l) ∩ Fj(tk, Hk) (2·22)

Here C stands for crossing point since in a Euclidean mission this set is a single point

where the circle Fj(tk, Hk) and the line segment Lk(xj(tk), l) cross each other.

Lemma 2.1. Target l is an active target for agent j at time tk if and only if

ηl(Cl,j(tk, Hk), tk +Hk) ≤ ηi(Cl,j(tk, Hk), tk +Hk), ∀i ∈ Tk (2·23)

Proof. See Appendix.

2.4.3 Action Horizon

hk in (Li and Cassandras, 2006b) is defined either (i) through a random event that

may be observed at te ∈ (tk, tk+Hk] so that hk = te−tk, or (ii) as hk = γHk, γ ∈ (0, 1).

This definition requires frequent iterations of the optimization problem through which

u∗k is determined in case no random event is observed to justify such action. Instead,

when there are no random events, we define a new multiple-immediate-target event to

occur when the minimization in (2·12) returns more than one target, i.e., the agent is

at an equal distance from at least two targets. This is illustrated in Figure 2·7 where

the agent is moving toward target 1 and at point z it is equidistant to targets 1 and

5. In this case, we define hk = ‖z − x1(tk)‖ and problem is re-solved at tk + hk. In

general, we define hk to be the shortest time until the first multiple-immediate-target

event occurs in (tk, tk +Hk]:

hk = min
{
Hk, inf {t > tk : ∃l, l∗ ∈ Tk s.t. (2·24)

d(xj(tk + t, uj(tk)),yl) = d(xj(tk + t, uj(tk)),yl∗)}
}

47

x1(tk)

y1

y2

y3y6

y4

y5
Hk

x1(tk + hk)

hk

z

y6

Figure 2·7: Multiple-Immediate-Target Event happens with agent at
equal distance to targets 1 and 5

By (2·20), the change in Sj(tk, Hk) is in fact the earliest time when a CRH control re-

evaluation is needed (unless an uncontrollable random event occurs) since the feasible

control set remains otherwise unaffected. Consequently, this definition of hk elimi-

nates any unnecessary control re-evaluation. Although we use the same definition for

the planning horizon Hk as in (2·12), we change the definition of the action horizon

hk in order to discourage un-necessary re-evaluations of the control. The definition of

hk in the previous approach is naively increasing the number of times CRH controller

should re-solve a problem. Instead we define a new event for determining hk in case

of no random events:

Definition 2.1. Multiple Immediate Target Event: This event happens when the

minimization in (2·12) returns more than one target.

We define the hk to be the shortest time until the first multiple immediate target

event happens in (tk, tk +Hk]. This definition tries to capture new active target while

it prevents unnecessary control re-evaluations.

48

2.4.4 Look Ahead and Aggregate Algorithm

In order to solve the optimization problem Pk in (2·7) we need to estimate the collec-

tion time τ̃ij(uk, tk, Hk) for each uk. This is calculated using a projected path of the

agent. The path projection has a Look ahead and Aggregate steps. In the first step

the active target set is determined for each agent. With multiple agents in a mission,

at each time step the remaining targets are partitioned using the relative proximity

function in (2·11). We denote the partition for agent j as Tk,j where:

l ∈ Tk,j ⇐⇒ p(δlj(tk)) ≥ p(δlq(tk)) ∀q ∈ A (2·25)

We assume |Tk,j|= Mk,j. All τ̃ij(uk, tk, Hk) are estimated as if the agent would visit

targets in its own partition by visiting the one with the least travel cost first. We

define the permutation θj(uk, tk, Hk) to be the order of the targets in agent’s j tour.

We drop uk , tk and Hk denoting the tour by θj for simplicity. θj(i) denotes the ith

target in agent j’s tour. ∀l ∈ Tk,j and with tk+1 = tk +Hk:

ηθj(1)(xj(tk+1, uj(tk)), tk+1) ≤ ηl(xj(tk+1, uj(tk)), tk+1) (2·26)

and and with n = 2, ...,Mk,j − 1 , ∀l ∈ Tk,j − {θ(1), ..., θ(n)}

ηθj(n+1)(yθj(n), tk+1) ≤ ηl(yθj(n), τ̃θj(n),j(uk, tk, Hk)) (2·27)

where

τ̃θ(n),j(uk, tk, Hk) = tk +Hk +
n−1∑
i=1

d(yθ(i),yθ(i+1)) (2·28)

49

xj(t)

x

v(x)

Figure 2·8: Agent’s Heading in a Euclidean Mission Space

This results in the corresponding τ̃lj(uk, tk, Hk) ∀l ∈ Tk,j. Now we calculate the

reward-to-go assuming |Tk,j|= Mk,j.

JA(uk, tk, Hk) =
N∑
j=1

Mk+1,j∑
l=1

λlφl(τ̃lj(uk, tk, Hk))ql(xj(τ̃lj(uk, tk, Hk))) (2·29)

Bringing the immediate reward from (2·15), the optimization problem Pk is:

max
uk∈[0 2π]N

[JI(uk, tk, Hk) + JA(uk, tk, Hk)] (2·30)

In (2·14) we defined the feasible set for the location of agent j in the next step

tk+1 = tk +Hk. In a Euclidean mission space, each point x ∈ Fj(tk, Hk) corresponds

to a heading v(x) which is the angle shown in Figure 2·8. The value of the heading

for each point x can be easily calculated by simple trigonometric functions. In lemma

2.2 we will prove that with the objective function defined as in (2·30) the optimal

uj(tk) = v(Cl,j(tk, Hk)) for some l ∈ Sj(tk, Hk)

Lemma 2.2. In a single agent mission (j = 1), if u∗ = [u∗1] is an optimal solution

to the problem:

J∗(tk, Hk) = max
uk∈[0 2π]

[JI(uk, tk, Hk) + JA(uk, tk, Hk)] (2·31)

then

∃ l ∈ S1(tk, Hk) s.t. u∗1 = v(Cl,1(tk, Hk)) (2·32)

50

Proof. See Appendix.

Now we can reduce the number of feasible controls to a countable set compared

to the infinite set of [0 2π]. Let’s define the set Vj as the new feasible headings for

agent j:

Vj(tk, Hk) = {v(x)|x = Cl,j(tk, Hk), l ∈ Sj(tk, Hk)} (2·33)

Then the complete feasible control set is defined as:

Vk = V1(tk, Hk)× V2(tk, Hk)× ...× VN(tk, Hk) (2·34)

Theorem 2.1. In a multi-agent MRCP mission if u∗ = [u∗1, ..., u
∗
N] is the optimal

solution to the problem in (2·30) then u∗ ∈ Vk.

Proof. See the Appendix

Theorem 2.1 reduces the problem Pk to a maximization problem over a countable

set of feasible controls.

J∗(tk, Hk) = max
uk∈Vk

[JI(uk, tk, Hk) + JA(uk, tk, Hk)] (2·35)

This reduces the size of the problem compared to the previous version of the CRH

controller. An example is shown in Figure 2·9. Two feasible points x and C5,1 cor-

responding to two feasible heading toward the same arc are shown. These feasible

headings have a common corresponding active target 5. For both feasible heading

the projected path would be [5, 4, 1, 3, 6, 2]. Notice that for the case that the active

target is positioned at one of the feasible points and may be collected after tk + Hk

the same holds. This is also shown in Figure 2·9 for active target 6 as for any point

on the red arc which corresponds to this active target, the projected path would be

[6, 2, 3, 1, 5, 4].

51

x1

1

2

3

4

5 6
Hk

C5,1

x

Figure 2·9: Two Different Feasible Points in the Set Fj(tk, Hk)

Multi-Step Look Ahead and Aggregate

Continuing with the same idea we can extend the One Step Look Ahead CRH to

a Multiple Steps Look Ahead algorithm. The idea is to investigate more possible

future paths for each agent at each time step tk. In the One Step Look Ahead CRH,

the aggregation reward is calculated based on one estimated tour of the remaining

targets. However, as we remember in the original problem Pk in (2·7) the reward-

to-go J∗(tk+1, Hk+1) itself is the maximum reward that can be collected at time tk+1.

The Multiple Step Look Ahead algorithm tries to estimate this maximum reward by

investigating more possible tours for each agent. For any feasible uj(tk) ∈ Vj(tk, Hk)

we can hypothetically move the agent to the next time step location xj(tk+1). We

do this for all the agents so we keep the synchronicity of the solution. At this new

hypothetical position, a new set of active targets is determined for each agent. Now

each agent can have |Sj(tk+Hk, Hk+1)| number of possible paths. At this point, we can

repeat the same procedure by hypothetically moving the agent to a feasible location

52

x1

1

2

3

4
5

Figure 2·10: Sample mission with 5 targets and 1 agent

from the set Fj(tk+1, Hk+1) or we can stop and calculate an estimated reward for

each available path. Once the estimated reward for each of these paths is calculated,

the maximum possible reward is the new aggregated reward. For a Two Step Look

Ahead problem Pk is:

max
uk∈Vk

[
JI(uk, tk, Hk) + max

uk+1∈Vk+1

[JI(uk+1, tk+1, Hk+1) + JA(uk+1, tk+1, Hk+1)]
]

(2·36)

This procedure can easily be repeated as many time as needed. For a single agent case

if we repeat this procedure at each time step until there is no target available. This

means for each agent we exploit all possible paths that it can take through all the

targets assuming at any tk it can go toward one of its active targets. We then obtain

a tree structure that the root shows the starting point or the base and a path from

the root to each leaf is a possible path for the agent. In Figure 2·10 a sample mission

with 5 targets is shown. If the optimal path of the agent is going to be calculated

using a brute force method the total number of possible paths is 5! = 120. The tree

structure for this mission has 21 possible paths. The tree is shown in Figure 2·11.

Note that to save the space the tree is broken into two parts . The first active target

53

0

1

3

4

2

5

5

2

4

2

3

5

3

2

5

5

2

5

3

2

2

3

2

4

1

3

5

5

3

5

1

3

5

3

1

(a)

0

3

1

4

2

5

5

2

4

1

3

2

5

5

2

5

2

3

3

2

2

5

1

3

5

1

2

3

3

2

2

1

3

(b)

Figure 2·11: The tree structure for the 5 target mission

set for agent 1 consists of targets 1, 2, 3, 4. Each of these active targets would then

generate several branches in the tree. These branches are shown in different colors

for more clarity. The starting point shown in point 0 is agent 1’s initial location.

However, finding the complete tree for problems with more than a handful of

targets is very time consuming. The Multi-Step Look Ahead CRH controller enables

us to investigate the tree down to a few levels and then calculate an estimated reward

for the rest of the branch. In order to have a better understanding of the Multi-

Step Look Ahead algorithm, the procedure for two cases are presented as separate

54

algorithms. In algorithm 1 the Two-Step Look Ahead for a one agent case is shown.

The number of agents is assumed to be one only for the simplicity of the notation in

the algorithm. In the more complicated version of the algorithm, the K-Step Look

Ahead for N agents is shown in algorithm 2. This algorithm has a recursive part that

is repeated until the K step look ahead is performed.

55

Algorithm 1 Two Step Look Ahead and Aggregate for One Agent

1: j = 1 One Agent problem

2: Find Active Targets S1(tk, Hk)

3: Define Sk = |S1(tk, Hk)|
4: Define Set Vj(tk, Hk) as in 2·33.

5: for i = 1 : Sk do

6: Next heading vi for agent j : vi = ith element of Vj(tk, Hk)

7: Calculate JI(vi, tk, Hk) (equation 2·15).

8: Move the agent to xj(tk +Hk, vi)

9: tk+1 = tk +Hk

10: Find Hk+1

11: Find Active Targets Sj(tk+1, Hk+1)

12: Define Sk+1 = |Sj(tk+1, Hk+1)|
13: Define Set Vj(tk+1, Hk+1) as in 2·33.

14: for ii = 1 : Sk+1 do

15: Next heading vii for agent j : vii = iith element of Vj(tk+1, Hk+1)

16: Calculate the Next Position for Agent 1 : xj(vii, tk +Hk)

17: Calculate JI(vii, tk+1, Hk+1) (2·15).

18: Find the aggregation tour starting at xj(tk +Hk, vii).

19: Calculate JA(vii, tk+1, Hk+1) (2·16).

20: end for

21: Calculate the Maximum Reward to Go:

J∗(vi, tk+1, Hk+1) = max
ii

[JI(vii, tk+1, Hk+1) + JA(vii, tk+1, Hk+1)]

22: Calculate the Estimated Total Reward:

J(vi, tk, Hk) = JI(vi, tk, Hk) + J∗(vi, tk+1, Hk+1)

23: end for

24: J∗(tk, Hk) = maxi J(vi, tk, Hk)

25: u∗k = argmaxvi J(vi, tk, Hk)

56

Algorithm 2 K Step Look Ahead CRH for N Agents

1: Steps=K
2: for j=1:N do
3: Find Active Targets Sj(tk, Hk) and define Sk,j = |Sj(tk, Hk)|
4: end for
5: Calculate Vk and the number of feasible controls: Tk = |Vk|=

∏N
j=1|Sj(tk, Hk)|

6: for i = 1 : Tk do
7: Take vi = ith row of Vk

8: for j = 1 : N do
9: Next heading for agent j : vi(j) and Next location: xj(tk +Hk, vi(j))

10: end for
11: Calculate JI(vi, tk, Hk) as in equation 2·15.
12: tk+1 = tk +Hk

13: Find Hk+1

14: JStep = 0
15: Steps=Steps-1
16: for j = 1 : N do
17: Find Active Targets Sj(tk+1, Hk+1)
18: Define Sk+1,j = |Sj(tk+1, Hk+1)|
19: end for
20: Calculate Vk+1 and Tk+1 = |Vk+1|=

∏N
j=1|Sj(tk+1, Hk+1)|

21: for ii = 1 : Tk+1 do
22: Take vii = iith row of Vk+1

23: for j = 1 : N do
24: Next heading for agent j : vii(j)
25: end for
26: tk+1 = tk +Hk

27: Find Hk+1

28: Calculate JI(vii, tk+1, Hk+1) (2·15).
29: JStep = JI(vii, tk+1, Hk+1) + JStep
30: if Steps> 0 then
31: Go To line 15 with k = k + 1
32: end if
33: Partition the Rest of the Targets.
34: Find the Aggregation Tour for All Agent’s Partitions.
35: Calculate JA(vii, tk+1, Hk+1) (2·16).
36: end for
37: J∗(tk+1, Hk+1) = maxii [Jstep + JA(vii, tk+1, Hk+1]
38: J(tk, Hk,vi) = JI(tk, Hk,u

i
k) + J∗(tk+1, Hk+1)

39: end for
40: J∗(tk, Hk) = maxi J(tk, Hk,vi)
41: u∗k = argmaxi J(tk, Hk,vi)

57

2.4.5 Two Target and One Agent Case

The easiest case of the maximum reward collection problem is the case with one

agent and two targets. Obviously this is an easy analytical routing problem which

the solution is among the two possible paths the agent can take. However, we here

prove that the one step look ahead and aggregate algorithm will solve the problem

optimally with any linearly decreasing rewards. Consider the case shown in Figure

2.12(a). There is two targets in the mission with initial reward and deadline of λ1, D1

and λ2, D2 respectively. The analytical solution for this case reveals wether path

1 → 2 or 2 → 1 is optimal. Following the previous analysis we assume that V1 = 1.

Also we use x1(tk) = x for the sake of brevity. We also assume the rewards are

linearly decreasing to zero as shown in the blue curve in Figure 2·1; φi(t) = 1 − t
Di

.

The reward for each of paths can be calculated as below:

R1→2 = λ1[1− d(x,y1)

D1

] + λ2[1− d(x,y1) + d(y1 − y2)

D2

] (2·37)

R2→1 = λ2[1− d(x,y2)

D2

] + λ1[1− d(x,y2) + d(y2 − y1)

D1

] (2·38)

Now let’s find the optimality criteria for each path. Assuming R1→2 > R2→1 we find

the criteria for λ1, λ2, D1 and D2 and the distances between agent and targets.

λ1[1− d(x,y1)

D1

] + λ2[1− d(x,y1) + d(y1,y2)

D2

]

> λ2[1− d(x,y2)

D2

] + λ1[1− d(x,y2) + d(y2,y1)

D1

]

(2·39)

By rearranging the two side of inequality we have:

λ1 + λ2 −
λ1

D1

d(x,y1)− λ2

D2

(d(x,y1) + d(y1,y2))

> λ1 + λ2 −
λ2

D2

d(x,y2)− λ1

D1

(d(x,y2) + d(y2,y1))

(2·40)

58

Now we can get simplify the two sides even more:

λ1

D1

d(x,y1) +
λ2

D2

[d(x,y1) + d(y1,y2)]

<
λ2

D2

d(x,y2) +
λ1

D1

[d(x,y2) + d(y2,y1)]

(2·41)

And with more rearranging we have the final inequality:

λ1

D1

[d(x,y1)− d(x,y2) + d(y2,y1)]

<
λ2

D2

[d(x,y2)− d(x,y1) + d(y1,y2)]

(2·42)

Theorem 2.2. In a mission with two target and one agent with the agent located at

x1(t), target 1 and 2 located at y1 and y2 if target i’s reward at time t is λi(1− t
Di

),

the CRH controller correctly finds the optimal path for this mission, assuming γ = 0

in (2·17).

Proof. see the Appendix.

2.4.6 Monotonicity in the Look Ahead Steps

Questions that come into mind after introducing the multiple look ahead steps algo-

rithm in the CRH controller are: How many look ahead steps should we perform?

Is it always better to do more look ahead steps? Or in a simple way, does the three

steps look ahead always gives a better answer than the two look ahead steps?

The answer to the first question is that it depends on the size of the problem

and our computation capability. We can even adjust the number of look ahead steps

during the course of the solution. We can start with more when there is more targets

available and lower the number once there is only a few targets in the mission space.

The answer to the other two questions is No. As much as one would like to

have a sort of monotonicity effect in this problem, the complexity of the problem and

its huge dependence on the topology of the mission causes the non-monotone results

with different number of look ahead steps. Here we are going to show a case with 10

59

1

1

2

B

(a)

1

1

2

B

(b)

1

1

2

B

Hk

(c)

1

1

2

B

Hk

C2,1(tk, Hk)

(d)

Figure 2·12: Sample mission space with 2 targets and one agent

equally important targets and one agent. This is a straight forward TSP for which

the optimal path can be obtained through an exhaustive search. For this case the

one and two look ahead steps CRH Controllers find the same path with a reward of

92.6683. However, once we move up to three look ahead steps, the CRH controller

degrade to a lower reward path with 92.5253 reward. The path for these controllers is

shown in figures 2.13(a) and 2.13(b). The optimal path that is calculated through the

exhaustive search is yet to be obtained by the CRH controllers. This happens when

we go up to six look ahead steps and the optimal path is calculated correctly (Figure

60

2.13(d)). The observation is that the non-monotone results from higher number of

look ahead is a local effect and once we increase the look ahead steps CRH controller

it can solve the problem to the optimality which as we see is not the case but hopefully

with enough number of look ahead steps we are able to converge to a reward that

would be the best we can get with any larger number of look ahead steps.

(a) One Step Look Ahead: [1− 9− 7− 4−
3− 10− 2− 6− 5− 8] - Reward=92.6683 -

Time=868

(b) Three Step Look Ahead: [6 − 2 − 10 −
3− 4− 7− 9− 1− 8− 5] - Reward=92.5253

- Time=897

(c) Five Step Look Ahead: [5− 6− 2− 10−
3 − 4 − 7 − 9 − 1 − 8] - Reward=92.6031 -

Time=862

(d) Six Step Look Ahead: [9 − 7 − 4 − 3 −
10− 2− 6− 5− 1− 8] - Reward=92.7436 -

Time=916

Figure 2·13: 10 Target mission with different number of look ahead
steps

61

Table 2.1: TSP benchmark instances comparison with the CRH con-
troller algorithm

TSP
Instance

Optimal
Tour
Length

Two Step
Look
Ahead

Three
Step Look
Ahead

Limited
Range
Agent

Minimum
Error (%)

att48 33522 38011 37492 41112 11.8

eil51 426 547 480 507 12.6

berlin52 7542 8713 8713 8137 7.8

st70 675 840 818 816 20.8

eil76 538 633 635 655 17.6

pr76 108159 146980 131678 146944 21.7

rat99 1211 1451 1470 1591 19.8

rd100 7910 9529 9123 9618 15.3

kroA100 21282 25871 24795 23782 11.7

kroB100 22141 28093 27415 28581 23.8

kroC100 20749 24603 25561 26171 18.5

2.5 Simulation Results

We consider several scenarios for single and multiple agent MRCP. The performance

of the original and modified CRH are compared. The common simulation parameters

∆ = 0, Vj = 1, αi = 1 and γ = 0 are used unless stated otherwise.

2.6 TSP Benchmarks Comparison

In this section we use the CRH controller as a path planning algorithm for some

benchmark TSP problems. The table 2.1 shows the result of the two step and three

step look ahead algorithm compared to the optimal results from (Reinelt, 1991).

Although the CRH controller algorithm is not necessarily designed for the determin-

istic TSP problem and will definitely not perform as well as the high efficient TSP

algorithms, it still produce a relatively reasonable error for most of the instances.

62

2.7 Limited Sensing Agents

In an attempt to measure the sensitivity of the results of the modified CRH con-

troller to partial mission information, we tried the same TSP benchmark problems

but assuming agents have limited sensing range. In these scenarios, the agent only

senses a target if it’s within its sensing range. We have assumed the sensing range

in each case is equal to 20% of the maximum dimension of the mission space. For

instance if a mission space is 300×200 the sensing range of the agent is 300
5

= 60. The

result of these missions with partial information is shown in the last column of table

2.1. The best result of two and three look ahead step is presented for this case. The

results in most cases are comparable to the full information results. The computation

time for the limited range agents is about an order of magnitude shorter than the

other one. These results show the low sensitivity of the CRH controller performance

to non-local information for each agent. This can be promising for the distributed

implementation of the CRH controller and also in cases where targets are not known

a priori and should be sensed by the agents locally.

2.8 Addressing Instabilities

In the previous sections we discussed a simple case mission with three linearly dis-

counting targets. The original CRH controller fails to perform this mission and gets

stuck in instability. In Figure 2·14 it is shown that the modified CRH can easily find

the optimal result for this simple case.

63

(a) Original CRH Oscillation (b) Modified CRH Optimal Solution

Figure 2·14: Comparison of the two CRH controller on a 3 targets
mission

2.9 Comparison with the Previous work

A sample Case from previous work

The simulation example is a previously studied case in (Li and Cassandras, 2006b).

In this case there are four vehicles and 10 targets. Targets are shown with squares

and the current reward shows below each target. Agents are solid color circles and

the base is shown with a triangle in the middle of the mission space. Agents would

only go back to the base when all targets are visited. The initial location of each

agent is shown with a bold black number corresponding to the agent’s ID number

(Figures 2.15(a) and 2.15(b)). Each target point has a maximum reward of Ri and a

deadline of Di. For i = 1, 4, 5, 6, 7, 9, 10 we have Ri = 10 while for i = 2, 8 Ri = 20

and finally R3 = 30. The deadline for the targets to be visited before the reward goes

sharply to zero is for i = 3, 5, 6, 8 , Di = 20 while for i = 2, 4, 7, 10 we have Di = 30.

Finally for i = 1, 9 Di = 10.

The previous CRH controller in (Li and Cassandras, 2006b) is implemented again to

be compared to our new CRH controller. In figures 2.15(a) and 2.15(b) the original

and the new CRH controller are implemented on the same mission. For the new CRH

a one step look ahead is considered in this case. As it can be observed the original

method tend to move the agents not directly toward a target but in the space between

64

targets. This behavior is specially due to the way the potential function is defined.

In both cases the mission tasks for agents 1 and 2 won’t change drastically between

the two controllers. However, in the original CRH as it can be seen in Figure 2.15(a)

agent 1 moves toward the space between targets 1 and 9 in the first move. Then once

agent 4 gets closer to the area around target 9, agent 1 decides to collect target 1.

For agents 3 and 4 however, the roles almost switch between the two controllers.In

the new CRH in the first step the active target set for agent 1 is {1, 3, 4, 6}, for target

2 is {2, 4} , for target 3 is {1, 4, 6} and for target 4 is {4, 6}. The decision is then to

find the set of four active targets that are optimal in this step. The cases with the

same active target for two or more agents won’t be considered.

(a) Original CRH Controller , Reward =

126.865 , Mission Time=22.39

(b) New CRH Controller , Reward = 127.257

, Mission Time=22.42

Figure 2·15: Original and new CRH comparison for a symmetrical 8
target case

In the final results the new CRH results in a slightly higher reward of 127.257 in

22.42 seconds compared to the original CRH reward of 126.86 in 22.39 seconds. Note

that here the time is not limited so the slight higher time in the new CRH doesn’t

discount the higher reward.

65

Comparison over a new random case

A mission with 25 targets distributed uniformly in the mission space and 2 agents

starting at the base is considered. λi ∼ U(10, 20) and Di ∼ U(300, 600) are uniformly

distributed. The initial mission is shown in Figure 2.16(a). In this case the the original

CRH result shown in Figure 2.16(b)) under-performs comparing to both three and

five step look ahead CRH (Figure 2.16(c)) and 2.16(d) by a large margin. The original

CRH gets stuck in an oscillatory behavior when agent 1 is close to target 20 and then

once around target 8. As we can see in Figure 2.16(d) the mission space is almost

divided into a top and bottom partition and the most number of targets are collected

by the five step look ahead controller.

66

0 50 100 150 200 250 300

0

50

100

150

200

250

300

X

1

1

13.6

2

10.23

15.8
4

16.3

5

12.8

6

14.1

7

14.2

8

16.5

9

18.3

10

12.1

11

12.7

12

15.4

13
18.2

14

10.8

15

14.5

16

11.6

17

16.3

18

13.6 19

14.2

20

16.7

21

17.4

22

11.5

23

15.2

24

10.1

25

17.4

12

(a) Initial Mission

0 50 100 150 200 250 300

0

50

100

150

200

250

300

X

112

2

2.1

6

6.1

8

2.5

11

5.3

20

12.6

21

10.9

23

9.2

25

14.2

(b) Original CRH Controller, Reward=62.8,

Travel Time=714, Computation Time:108s

0 50 100 150 200 250 300
0

50

100

150

200

250

300

X

11

2

1

8.7 3

10.74

7.2

5

3.3

6

9.3

8

8.2

10

5.3

11

7.5

12

5.4

14

8.0

15

0.3

16

10.9

17

14.4

19

1.2

20

11.8

21

11.7

22

2.7

23

10.7

24

4.0

(c) 3-L Controller, Reward=141.29, Travel

Time=677, Computation Time:104s

0 50 100 150 200 250 300

0

50

100

150

200

250

300

X

1 12

1

8.7

2

2.43

11.44

7.0

5

3.9

6

7.3

8

6.2

10

3.9

11

6.0

12

6.1

14

8.0

16

9.2

17

14.4

18

3.3 19

0.4

20

11.8

21

9.8

23

9.0

24

0.0

25

14.6

(d) 5-L Controller, Reward=143.42, Travel

Time=657, Computation Time:1400s

Figure 2·16: Performance comparison of the original and new CRH
algorithms (Numbers in red show the reward for each target)

2.9.1 Random Cases Comparison

To compare the overall performance of the modified CRH controller, we generated

10 random missions, each with 20 target that are uniformly located in a 300 × 300

67

mission space and two agents initially at the base. λi ∼ U(2, 12) and Di = 300. The

results for all runs are shown in table 2.2. We can see that the average total reward

is increased by 26% while the average mission time is increased by 8%.

Table 2.2: 20 Target and 2 Agents Random Missions

Mission #
Original CRH Three Step Look Ahead CRH

Total Reward Mission Time Total Reward Mission Time

1 33.92 412 45.24 536

2 41.48 439 30.12 426

3 17.03 476 41.19 483

4 14.08 389 37.24 457

5 21.5 444 47.25 537

6 44.61 389 47.91 471

7 23.93 528 19.61 462

8 16.39 415 24.46 489

9 30.92 478 19.8 429

10 18.8 458 19.4 476

Average 26.26 443 33.22 479

2.10 Sparsity Factor in Clustered Missions

We considered 8 random mission with 20 targets that are once located uniformly and

in another case located in 9 clusters. We want to see if the sparsity factory ζi in (2·17)

would help us in either of these cases. The mission space is 300 × 300 with rewards

and deadlines the same as the previous case. We once solve the missions with a γ = 0

which eliminates the effect of ζi and then run them with γ = 0.3. The results show

that in the clustered missions rewards are improved by about 24% margin whereas in

the uniform cases the reward in both cases is equal on average.

68

Table 2.3: Effect of the sparsity factor for clustered missions ζi

Mission #
γ = 0 γ = 0.3

Total Reward Mission Time Total Reward Mission Time

1 40.62 552 61.9 413

2 64.89 447 64.64 420

3 35.24 471 63.8 461

4 63.78 465 64.64 478

5 25.42 493 26.5 449

6 22 454 22 454

7 44.1 458 46.84 449

8 34.26 466 61.21 472

Average 41.29 475 51.44 449

69

Chapter 3

Event Excitation in Multi-agent Systems

3.1 General Framework for Multi-agent Systems

Multi-agent systems are commonly modeled as hybrid systems with time-driven dy-

namics describing the motion of the agents or the evolution of physical processes

in a given environment, while event-driven behavior characterizes events that may

occur randomly (e.g., an agent failure) or in accordance to control policies (e.g., an

agent stopping to sense the environment or to change directions). In some cases,

the solution of a multi-agent dynamic optimization problem is reduced to a policy

that is naturally parametric. As such, a multi-agent system can be studied with pa-

rameterized controllers aiming to meet certain specifications or to optimize a given

performance metric. Moreover, in cases where such a dynamic optimization problem

cannot be shown to be reduced to a parametric policy, using such a policy is still

near-optimal or at least offers an alternative.

In order to build a general framework for multi-agent optimization problems,

assuming S as the mission space, we introduce the function R(w) : S → R as a

“property” of point w ∈ S. For instance, R(w) could be a weight that gives relative

importance to one point in S compared to another. Setting R(w) > 0 for only a finite

number of points implies that we limit ourselves to a finite set of points of interest

while the rest of S has no significant value.

Assuming F to be the set of all feasible agent states, We define P (w, s) : S×F →

R to capture the cost/reward resulting from how agents with state s ∈ F interact

70

Figure 3·1: Multi-agent system in a dynamic setting, blue areas are
obstacles

with w ∈ S. For instance, in coverage problems if an “event” occurs at w, then

P (w, s) is the probability of agents jointly detecting such events based on the relative

distance of each agent from w.

In general settings, the objective is to find the best state vector s1, · · · , sN so that

N agents achieve a maximal reward (minimal cost) from interacting with the mission

space S:

min
s∈F

J =

∫
S

P (w, s)R(w)dw (3·1)

This static problem can be extended to a dynamic version where the agents

determine optimal trajectories si(t), t ∈ [0, T], rather than static states:

min
u(t)∈U

J =

∫ T

0

∫
S

P (w, s(u(t)))R(w, t)dwdt (3·2)

subject to motion dynamics:

ṡj(t) = fj(sj, uj, t), j = 1, · · · , N (3·3)

In Figure 3·1, such a dynamic multi agent system is illustrated.

As an example, consensus problems are just a special case of (3·1). Suppose that

71

we consider a finite set of points w ∈ S which coincide with the agents states s1, ..., sN

(which are not necessarily their locations). Then we can set P (w, s) = ‖si−sj‖2 and,

therefore, replace the integral in (3·1) by a sum. In this case, R(w) = Ri is just the

weight that an agent carries in the consensus algorithm. An optimum occurs when

‖si − sj‖2= 0 for all i, j, i.e., all agents “agree” and consensus is reached. This is a

special case because of the simplicity in P (w, s) making the problem convex so that

a global optimum can be achieved, in contrast to most problems we are interested in.

As for the formulation in (3·2), consider a trajectory planning problem where N

mobile agents are tasked to visit M stationary targets in the mission space S. Target

behavior is described through state variables xi(t) which may model reward functions,

the amount of data present at i, or other problem-dependent target properties. More

formally, let (Ω,F ,P) be a probability space and ω ∈ Ω a realization of the system

where target dynamics are subject to random effects:

ẋi(t) = gi(xi(t), ω) (3·4)

gi(·) is as such that xi(t) is monotonically increasing by t and it resets to zero each

time a target is completely emptied by an agent. In the context of (3·2), we assume

the M targets are located at points wi, i = 1, · · · ,M and define

R(w, t) =

{
R(xi(t), w) if w ∈ C(wi)
0 otherwise

(3·5)

to be the value of point w, where C(wi) is a compact 2-manifold in R2 containing

wi which can be considered to be a region defined by the sensing range of that

target relative to agents (e.g., a disk centered at wi). Note that R(w, t) is also a

random variable defined on the same probability space above. Given that only points

w ∈ C(wi) have value for the agents, there is an infinite number of points w /∈ C(wi)

such that R(w, t) = 0 provided the following condition holds:

72

Condition 1: If ∃i such that w ∈ C(wi) then w /∈ C(wj) holds ∀j 6= i.

This condition is to ensure that two targets do not share any point w in their

respective sensing ranges. Also it ensures that the set {C(wi) | i = 1 : · · · ,M} does

not create a compact partitioning of the mission space and there exist points w which

do not belong to any of the C(wi).

Viewed as a stochastic hybrid system, we may define different modes depending

on the states of agents or targets and events that cause transitions between these

modes. Relative to a target i, any agent has at least two modes: being at a point

w ∈ C(wi), i.e., visiting this target or not visiting it. Within each mode, agent j’s

dynamics, dictated by (3·3), and target i’s dynamics in (3·4) may vary. Accordingly,

there are at least two types of events in such a system: (i) δ0
ij events occur when

agent j initiates a visit at target i, and (ii) δ+
ij events occur when agent j ends a visit

at target i. Additional event types may be included depending on the specifics of a

problem, e.g., mode switches in the target dynamics or agents encountering obstacles.

An example is shown in Figure 3·2, where target sensing ranges are shown with

green circles and agent trajectories are shown in dashed lines starting at a base shown

by a red triangle. In the blue trajectory, agent 1 moves along the trajectory that

passes through points A → B → C → D. It is easy to see that when passing

through points A and C we have δ0
i1 and δ0

i′1 events, while passing through B and

D we have δ+
i1 and δ+

i′1 events. The red trajectory is an example where none of the

events is excited. Suppose we consider an on-line trajectory adjustment process in

which the agent improves its trajectory based on its performance measured through

(3·5). In this case, R(w, t) = 0 over all t, as long as the agent keeps using the

red trajectory, i.e., no event ever occurs. Therefore, if an event-driven approach is

used to control the trajectory adjustment process, no action is ever triggered and the

approach is ineffective. In contrast, in the blue trajectory the controller can extract

73

Figure 3·2: Sample trajectories

useful information from every observed event; such information (e.g., a gradient of J

with respect to controllable parameters as described in the next section) can be used

to adjust the current trajectory so as to improve the objective function J in (3·1) or

(3·2).

Therefore, if we are to build an optimization framework for this class of stochastic

hybrid systems to allow the application of event-driven methods by calculating a per-

formance measure gradient, then a fundamental property required is the occurrence

of at least some events in a sample realization. In particular, the Infinitesimal Per-

turbation Analysis (IPA) method uses a single sample realization of the system over

which events are observed along with their occurrence times and associated system

states. Suppose that the trajectories can be controlled through a set of parameters

forming a vector Θ. Then, under some mild assumptions, IPA provides an unbi-

ased estimate of the gradient of a performance metric J(Θ) with respect to Θ. This

gradient is then used to improve the trajectory and ultimately seek an optimal one

when appropriate conditions hold. As in the example of Figure 3·2, it is possible to

encounter trajectory realizations where no events occur in the system. In the above

example, this can easily happen if the trajectory does not pass through any target.

The existence of such undesirable trajectories is the direct consequence of Condition

74

1. This lack of event excitation results in event-based controllers being unsuitable.

New Metric: In order to overcome this issue we propose a new definition for

R(w, t) in (3·5) as follows:

R(w, t) =
M∑
i=1

hi(xi(t), di(w)) (3·6)

where w ∈ S, hi(·) is a function of the target’s state xi(t) and di(w) = ‖wi − w‖.

Note that, if hi(·) is properly defined, (3·6) yields R(w, t) > 0 at all points.

While the exact form of hi(·) depends on the problem, we impose the condition

that hi(·) is monotonically decreasing in di(w). We can think of hi(·) as a value

function associated with point wi. Using the definition of R(w, t), this value is spread

out over all points w ∈ S rather than being concentrated at the single point wi. This

creates a continuous potential field for the agents leading to a non-zero gradient of

the performance measure even when the trajectories do not excite any events. This

non-zero gradient will then induce trajectory adjustments that naturally bring them

toward ones with observable events.

Finally, recalling the definition in (3·2), we also define:

P (w, s) =
N∑
j=1

‖sj(t)− w‖2 (3·7)

the total quadratic travel cost for agents to visit point w.

In Section 3.3, we will show how to apply R(w, t) and P (w, s) defined as above

in order to determine optimal agent trajectories for a class of multi-agent problems of

the form (3·2). First, however, we review in the next section the event-driven IPA cal-

culus which allows us to estimate performance gradients with respect to controllable

parameters.

75

3.2 Event-driven IPA Calculus

In this section, we go through a brief introduction of the infinitesimal perturbation

method (IPA). IPA is an event-driven method that allows us to calculate an unbiased

estimate for the performance metric of a stochastic hybrid system (SHS) with respect

to the control variables of the system. In general, we define θ ∈ Fθ to be the control

parameter of the system where Fθ is a compact convex set. We fix a particular value

of the parameter θ ∈ Fθ and assuming all the random processes are defined on a

common probability space, we study a resulting sample path of this SHS. In this

sample realization, let τk(θ), k = 1, 2, · · · denote the occurrence times of the discrete

events in increasing order, and for convenience define τ0(θ) = 0.

We will omit the dependency on θ when no confusion arises. The continuous state

of the SHS is generally a function of θ, and time t, and is thus denoted by x(θ, t).

The SHS is at a discrete mode for each interval [τk(θ), τk+1(θ)), and the time-driven

state satisfies

ẋ = fk(x, θ, t) (3·8)

in which x is any of the continuous state variables of the system and ẋ denotes ∂x
∂t

Perturbation analysis studies the sensitivity of the state x(θ, t) and the event

times τk(θ) with respect to θ and, ultimately, how θ influences performance metrics

of the problem.

The discrete mode of the system will possibly change at each event τk which then

results in changes in some of the continuous dynamics of the system. The event times

τk play an important role in defining the interactions between the time-driven and

event-driven dynamics of the system.

Following the framework in (Cassandras et al., 2010), consider a general perfor-

76

mance function J of the control parameter θ:

J(θ;x(θ, 0), T) = E[L(θ);x(θ, 0), T)] (3·9)

where L(θ;x(θ, 0), T) is a sample function of interest evaluated in the interval [0, T]

with initial conditions x(θ, 0). For simplicity, we write J(θ) and L(θ). Suppose that

there are K events, with occurrence times generally dependent on θ, during the time

interval [0, T] and define τ0 = 0 and τK+1 = T . We assume Lk : Rn×Fθ×R+ → R be

a function that describes the realization in the interval [τk, τk+1]. Now we can define

L(θ) by

L(θ) =
K∑
k=0

∫ τk+1

τk

Lk(x, θ, t)dt (3·10)

The restriction of the definition of J(θ) to a finite horizon T which is independent

of θ is only for the sake of simplicity and can be changed based on different problems.

Returning to the stochastic setting, the ultimate goal of the iterative process

shown is to optimize Eω[L(θ, ω)], where we use ω to emphasize dependence on a

sample path ω of a SHS (clearly, this is reduced to L(θ) in the deterministic case).

Achieving such optimality is possible under standard ergodicity conditions imposed

on the underlying stochastic processes, as well as the assumption that a single global

optimum exists; otherwise, the gradient-based approach is simply continuously at-

tempting to improve the observed performance L(θ, ω). Thus, we are interested in

estimating the gradient

dJ(θ)

dθ
=
dEω[L(θ, ω)]

dθ
(3·11)

by evaluating dL(θ,ω)
dθ

based on directly observed data. We obtain θ∗ by optimizing

J(θ) through an iterative scheme of the form

θn+1 = θn − ηnHn(θn;x(θ, 0), T, ωn), n = 0, 1, · · · (3·12)

77

where ηn is a step size sequence and Hn(θn;x(θ, 0), T, ωn) is the estimate of dJ(θ)
dθ

at

θ = θn. In using IPA, Hn(θn;x(θ, 0), T, ωn) is the sample derivative dL(θ,ω)
dθ

, which is

an unbiased estimate of dJ(θ)
dθ

if the condition (dropping the symbol ω for simplicity)

E[
dL(θ)

dθ
] =

dE[L(θ)]

dθ
=
dJ(θ)

dθ
(3·13)

is satisfied, which turns out to be the case under mild technical conditions. The

conditions under which algorithms of the form (3·12) converge are well-known (e.g.,

see (Kushner and Yin, 2003)). In addition to the unbiasedness property, it can be

shown that such gradient estimates are independent of the stochastic processes of the

underlying SHS and require minimal information from the observed sample path.

The process through which IPA evaluates dL(θ)
dθ

is based on analyzing how changes

in θ influence the state x(θ, t) and the event times τk(θ). In turn, this provides

information on how L(θ) is affected, because it is generally expressed in terms of

these variables. Given θ = [θ1, ..., θl]
T , we use the Jacobian matrix notation:

x′(θ, t) =
∂x(θ, t)

∂θ
, τk

′ =
∂τk(θ)

∂θ
, k = 1, · · · , K (3·14)

for all state and event time derivatives. For simplicity of notation, we omit θ from

the arguments of the functions above unless it is essential to stress this dependence.

It is shown in (Cassandras et al., 2010) that x′(t) satisfies:

dx′(t)

dt
=
∂fk(t)

∂x
x′(t) +

∂fk(t)

∂θ
(3·15)

for t ∈ [τk(θ), τk+1(θ)) with boundary condition

x′(τ+
k) = x′(τ−k) + [fk−1(τ−k)− fk(τ+

k)]τ ′k (3·16)

for k = 0, · · · , K. We note that whereas x(t) is often continuous in t, x′(t) may be

78

discontinuous in t at the event times τk; hence, the left and right limits above are

generally different. If x(t) is not continuous in t at t = τk(θ), the value of x(τ+
k) is

determined by the state reset function r(q, q′, x, ν, δ) and

x′(τ+
k) =

dr(q, q′, x, ν, δ)

dθ
(3·17)

Furthermore, once the initial condition x′(τ+
k) is given, the linearized state trajectory

x′(t) can be computed in the interval t ∈ [τk(θ), τk+1(θ)) by solving (3·15) to obtain

x′(t) = e
∫ t
τk

∂fk(u)

∂x
du
[∫ t

τk

∂fk(v)

∂θ
e
−

∫ t
τk

∂fk(u)

∂x
du
dv + ξk

]
(3·18)

with the constant ξk determined from x′(τ+
k). In order to complete the evaluation of

x′(τ+
k) we need to also determine τ ′k. If the event at τk(θ) is exogenous τ ′k = 0 and if

the event at τk(θ) is endogenous:

τ ′k = −
[∂gk
∂x

fk(τ
−
k)
]
(
∂gk
∂θ

+
∂gk
∂x

x′(τ−k)) (3·19)

where gk(x, θ) = 0 and it is defined as long as ∂gk
∂x
fk(τ

+
k) 6= 0 (details may be found

in (Cassandras et al., 2010).)

The derivative evaluation process involves using the IPA calculus in order to

evaluate the IPA derivative dL
dθ

. This is accomplished by taking derivatives in (3·10)

with respect to θ:

dL(θ)

dθ
=

K∑
k=0

d

dθ

∫ τk+1

τk

Lk(x, θ, t)dt (3·20)

Applying the Leibnitz rule, we obtain, for every k = 0, · · · , K,

d

dθ

∫ τk+1

τk

Lk(x, θ, t)dt

=

∫ τk+1

τk

[∂Lk(x, θ, t)
∂x

x′(t) +
∂Lk(x, θ, t)

∂θ

]
dt

+ Lk(x(τk+1), θ, τk+1)τ ′k+1 − Lk(x(τk), θ, τk)τ
′
k

(3·21)

79

In summary the three equations (3·16), (3·18) and (3·19) form the basis of the IPA

calculus and allow us to calculate the final derivative in (3·21). In the next section

IPA is applied to a data collection problem in a multi-agent system.

3.3 The Data Collection Problem

We consider a class of multi-agent problems where the agents must cooperatively

visit a set of target points to collect associated rewards (e.g., to collect data that are

buffered at these points.). The mission space is S ⊂ R2. This class of problems falls

within the general formulation introduced in (3·2). The state of the system is the

position of agent j time t, sj(t) = [sxj (t), s
y
j (t)] and the state of the target i, xi(t).

The agent’s dynamics (3·3) follow a single integrator:

ṡxj (t) = uj(t) cos θj(t), ṡyj (t) = uj(t) sin θj(t) (3·22)

where uj(t) is the scalar speed of the agent (normalized so that 0 ≤ uj(t) ≤ 1) and

θj(t) is the angle relative to the positive direction, 0 ≤ θj(t) < 2π. Thus, we assume

that each agent controls its speed and heading.

We assume the state of the target xi(t) represents the amount of data that is

currently available at target i (this can be modified to different state interpretations).

The dynamics of xi(t) in (3·4) for this problem are:

ẋi(t) =

{
0 if xi(t) = 0 and σi(t) ≤ µijp(sj(t), wi)
σi(t)− µijp(sj(t), wi) otherwise

(3·23)

i.e., we model the data at the target as satisfying simple flow dynamics with an

exogenous (generally stochastic) inflow σi(t) and a controllable rate with which an

agent empties the data queue given by µijp(sj(t), wi). For brevity we set p(sj(t), wi) =

pij(t) which is the normalized data collection rate from target i by agent j and µij is

a nominal rate corresponding to target i and agent j.

80

Assuming M targets are located at wi ∈ S, i = 1, . . . ,M, and have a finite range

of ri, then agent j can collect data from wi only if dij(t) = ‖wi − sj(t)‖≤ ri. We

then assume that: (A1) pij(t) ∈ [0, 1] is monotonically non-increasing in the value

of dij(t) = ‖wi − sj(t)‖, and (A2) it satisfies pij(t) = 0 if dij(t) > ri. Thus, pij(t)

can model communication power constraints which depend on the distance between

a data source and an agent equipped with a receiver (similar to the model used in

(Ny et al., 2008)) or sensing range constraints if an agent collects data using on-board

sensors. For simplicity, we will also assume that: (A3) pij(t) is continuous in dij(t)

and (A4) only one agent at a time is connected to a target i even if there are other

agents l with pil(t) > 0; this is not the only possible model, but we adopt it based on

the premise that simultaneous downloading of packets from a common source creates

problems of proper data reconstruction. This means that j in (3·23) is the index of

the agent that is connected to target i at time t.

The dynamics of xi(t) in (3·23) results in two new event types added to what was

defined earlier, (i) ξ0
i events occur when xi(t) reaches zero, and (ii) ξ+

i events occur

when xi(t) leaves zero.

The performance measure is the total content of data left at targets at the end

of a finite mission time T . Thus, we define J1(t) to be the following (recalling that

{σi(t)} are random processes):

J1(t) = E
[M∑
i=1

αixi(t)
]

(3·24)

where αi is a weight factor for target i. We can now formulate a stochastic optimiza-

tion problem P3.1 where the control variables are the agent speeds and headings

denoted by the vectors u(t) = [u1(t), . . . , uN(t)] and θ(t) = [θ1(t), . . . , θN(t)] respec-

81

tively (omitting their dependence on the full system state at t).

P3.1 : min
u(t),θ(t)

J(T) =
1

T

∫ T

0

J1(t)dt (3·25)

where 0 ≤ uj(t) ≤ 1, 0 ≤ θj(t) < 2π, and T is a given finite mission time. This

problem can be readily placed into the general framework (3·2). In particular, the

right hand side of (3·25) is:

1

T
E

[∫ T

0

∑
i

∫
C(wi)

αi
πr2

i

xi(t)dwdt

]

=
1

T
E

[∫ T

0

∫
S

∑
i

αi1{w ∈ C(wi)}
πr2

i

xi(t)dwdt

] (3·26)

This is now in the form of the general framework in (3·2) with

R(w, t) =
∑
i

αi1{w ∈ C(wi)}
πr2

i

xi(t) (3·27)

and

P (sj(t), w) = 1 (3·28)

Recalling the definition in (3·5), only points within the sensing range of each tar-

get have non-zero values, while all other point value are zero, which is the case in

(3·27) above. In addition, (3·28) simply shows that there is no meaningful dynamic

interaction between an agent and the environment.

Problem P3.1 is a finite time optimal control problem. In order to solve this,

following previous work in (Khazaeni and Cassandras, 2015) we proceed with a stan-

dard Hamiltonian analysis leading to a Two Point Boundary Value Problem (TPBVP)

(Bryson and Ho, 1975). Here we present the Hamiltonian analysis for the problem in

(3·25). The states and costates are known at t = 0 and t = T respectively. We define

82

a state vector and the associated costate vector:

X(t) = [x1(t), . . . , xM(t), sx1(t), sy1(t), . . . , sxN(t), syN(t)] (3·29)

λ(t) = [λ1(t), . . . , λM(t), ηx1 (t), ηy1(t), . . . , ηxN(t), ηyN(t)] (3·30)

Then the Hamiltonian is

H(X, λ,u, θ) =
1

T
J1(t) +

∑
i

λi(t)ẋi(t)

+
∑
j

(ηxj (t)uj(t) cos θj(t) + ηyj (t)uj(t) sin θj(t))
(3·31)

where the costate equations are

λ̇i(t) = −∂H
∂xi

= −αi
T
, λi(T) = 0 (3·32)

η̇xj (t) = −∂H
∂sxj

= −
∑
i

λi(t)
∂

∂sxj
ẋi(t) (3·33)

η̇yj (t) = −∂H
∂syj

= −
∑
i

λi(t)
∂

∂syj
ẋi(t) (3·34)

ηxj (T) = ηyj (T) = 0 (3·35)

From (3·31), after some trigonometric manipulations, we get

H(X, λ,u, θ) =
J1(t)

T
+
∑
i

λi(t)ẋi(t)

+
∑
j

uj(t)sgn(ηyj (t))
√
ηxj (t)2 + ηyj (t)

2 sin(θj(t) + ψj(t))
(3·36)

where tanψj(t) =
ηxj (t)

ηyj (t)
for ηyj (t) 6= 0 and ψj(t) = sgn(ηxj (t))π

2
if ηyj (t) = 0. Applying

the Pontryagin principle to (3·31) with (u∗, θ∗) being the optimal control, we have:

H(X∗, λ∗,u∗, θ∗) = min
u(t),θ(t)

H(X, λ,u, θ) (3·37)

83

From (3·36) we easily see that we can always make the uj(t) multiplier to be negative,

hence, recalling that 0 ≤ uj(t) ≤ 1,

u∗j(t) = 1 (3·38)

Following the Hamiltonian definition in (3·31) we have:

∂H

∂θj
= −ηxj (t)uj(t) sin θj(t) + ηyj (t)uj(t) cos θj(t) (3·39)

and setting ∂H
∂θj

= 0 the optimal heading θ∗j (t) should satisfy:

tan θ∗j (t) =
ηyj (t)

ηxj (t)
(3·40)

Hence, we only need to evaluate θ∗j (t) for all t ∈ [0, T]. This can be accomplished by

discretizing the problem in time and numerically solving a TPBVP with a forward

integration of the state and a backward integration of the costate.

This TPBVP is computationally expensive and easily becomes intractable when

problem size grows. The ultimate solution of the TPBVP is a set of agent trajectories

that can be put in a parametric form defined by a parameter vector Θ and then opti-

mized over Θ. If the parametric trajectory family is broad enough, we can recover the

true optimal trajectories; otherwise, we can approximate them within some accept-

able accuracy. Moreover, adopting a parametric family of trajectories and seeking an

optimal one within it has additional benefits: it allows trajectories to be periodic,

often a desirable property, and it allows one to restrict solutions to trajectories with

desired features that the true optimal may not have, e.g., smoothness properties to

achieve physically feasible agent motion.

Parameterizing the trajectories and using gradient based optimization methods,

in light of the discussions from the previous sections, enables us to make use of

Infinitesimal Perturbation Analysis (IPA) to carry out the trajectory optimization

84

process. We represent each agent’s trajectory through general parametric equations

sxj (t) = fx(Θj, ρj(t)), syj (t) = fy(Θj, ρj(t)) (3·41)

where the function ρj(t) controls the position of the agent on its trajectory at time t

and Θj is a vector of parameters controlling the shape and location of the trajectory.

Let Θ = [Θ1, . . . ,ΘN]. We now revisit problem P3.1 in (3·25):

min
Θ∈FΘ

J(Θ, T) =
1

T

∫ T

0

J1(Θ, t)dt (3·42)

and will bring in the equations that were introduced in the previous section in order

to calculate an estimate of dJ(Θ)
dΘ

as in (3·11). For this problem due to the continuity

of xi(t) the last two terms in (3·21) vanish. From (3·24) we have:

d

dΘ

∫ τk+1

τk

M∑
i=1

αixi(Θ, t)dt =

∫ τk+1

τk

M∑
i=1

αix
′
i(Θ, t)dt (3·43)

In summary, the evaluation of (3·43) requires the state derivatives x′i(t) explicitly

and s′j(t) implicitly, (dropping the dependence on Θ for brevity). The latter are easily

obtained for any specific choice of f and g in (3·41). The former require a rather

laborious use of (3·16),(3·18),(3·19) which, reduces to a simple set of state derivative

dynamics as shown next.

Proposition 3.1. After an event occurrence at t = τk, the state derivatives x′i(τ
+
k)

with respect to the controllable parameter Θ satisfy the following:

x′i(τ
+
k) =

 0 if e(τk) = ξ0
i

x′i(τ
−
k)− µil(t)pil(τk)τ

′

k if e(τk) = δ+
ij

x′i(τ
−
k) otherwise

where l 6= j with pil(τk) > 0 if such l exists and τ
′

k =
∂dij(sj)

∂sj
s′j

(
∂dij(sj)

∂sj
ṡj(τk)

)−1

.

Proof. The proof for this will be presented for a general case of the problem in propo-

sition 4.1.

85

As is obvious from Proposition 1, the evaluation of x′i(t) is entirely dependent on

the occurrence of events ξ0
i and δ+

ij in a sample realization, i.e., ξ0
i and δ+

ij cause jumps

in this derivative which carry useful information. Otherwise, x′i(τ
+
k) = x′i(τ

−
k) is in

effect and these gradients remain unchanged. However, we can easily have realizations

where no events occur in the system (specifically, events of type δ0
ij and δ+

ij) if the

trajectory of agents in the sample realization does not pass through any target. This

lack of event excitation results in the algorithm in (3·12) to stall.

In the next section we overcome the problem of no event excitation using the

definitions in (3·6) and (3·7). We accomplish this by adding a new metric to the

objective function that generates a non-zero sensitivity with respect to Θ.

3.3.1 Event Excitation

Our goal here is to select a function hi(·) in (3·6) with the property of “spreading”

the value of xi(t) over all w ∈ S. We begin by determining the convex hull produced

by the targets, since the trajectories need not go outside this convex hull. Let T =

{w1, w2, · · · , wM} be the set of all target points. Then, the convex hull of these points

is as the following:

C =

{ M∑
i=1

βiwi|
∑
i

βi = 1,∀i, βi ≥ 0

}
(3·44)

Given that C ⊂ S, we seek some R(w, t) that satisfies the following property for

constants ci > 0: ∫
C
R(w, t)dw =

M∑
i=1

cixi(t) (3·45)

so that R(w, t) can be viewed as a continuous density defined for all points w ∈ C

which results in a total value equivalent to a weighted sum of the target states xi(t),

i = 1, . . . ,M . In order to select an appropriate h(xi(t), di(w)) in (3·6), we first define

86

d+
i (w) = max(‖w − wi‖, ri) where ri is the target’s sensing range. We then define:

R(w, t) =
M∑
i=1

αixi(t)

d+
i (w)

(3·46)

Here, we are spreading a target’s reward (numerator) over all w so as to obtain the

“total weighted reward density” at w. Note that d+
i (w) = max(‖w − wi‖, ri) > 0 to

ensure that the target reward remains positive and fixed for points w ∈ C(wi). In

order to illustrate this term Figure 3.4(a) shows a sample mission space with target

locations and Fog 3.4(b) shows the value of R(w, t) at a specific time t.

Moreover, following (3·7),

P (w, s(t)) =
N∑
j=1

‖sj(t)− w‖2 (3·47)

Using these definitions we introduce a new objective function metric which is added

to the objective function in (4·22):

J2(t) = E
[∫
C
P (w, s(t))R(w, t)dw

]
(3·48)

The expectation is a result of P (w, s(t)) and R(w, t) being random variables defined

on the same probability space as xi(t).

Proposition 3.2. For R(w, t) in (3·46), there exist ci > 0, i = 1, . . . ,M , such that:

∫
C
R(w, t)dw =

M∑
i=1

cixi(t) (3·49)

Proof. We have

∫
C
R(w, t) =

∫
C

M∑
i=1

αixi(t)

d+
i (w)

dw

=
M∑
i=1

αi

∫
C

xi(t)

d+
i (w)

dw

(3·50)

87

Figure 3·3: One Target R(w, t) Calculation

We now need to find the value of
∫
C

xi(t)

d+
i (w)

for each target i. To do this we first

look at the case of one target in a 2D space and for now we replace C with a disk

with radius Λ around the target (black circle with radius Λ in Figure 3·3). We can

now calculate the above integral for this target using the polar coordinates:∫
C

xi(t)

d+
i (w)

dw =

∫ 2π

0

∫ Λ

0

xi(t)

max(ri, r)
drdθ

=

∫ 2π

0

∫ ri

0

xi(t)

ri
drdθ +

∫ 2π

0

∫ Λ

ri

xi(t)

r
drdθ

= xi(t)[2π(1 + log(
Λ

ri
))]

(3·51)

However in reality, C is the convex hull of all targets. We will use the same idea

to calculate the
∫
C

xi(t)

d+
i (w)

dw for the case of actual convex hull. To do this we consider

three separate cases for the target location. In the following

1. Target i and C(wi) are completely in the interior of C:

This is shown in Figure 3·3 for the target filled in red color. Using the same polar

coordinate for each θ we define Λ(θ) to be the distance of the target to the edge of C

88

in the direction of θ. (C shown by a filled red polygon in Figure 3·3).∫
C

xi(t)

d+
i (w)

dw =

∫ 2π

0

∫ Λ(θ)

0

xi(t)

d+
i (r, θ)

drdθ

=

∫ 2π

0

∫ ri

0

xi(t)

ri
drdθ +

∫ 2π

0

∫ Λ(θ)

ri

xi(t)

r
drdθ

= xi(t)[2π +

∫ 2π

0

log(
Λ(θ)

ri
)dθ]

(3·52)

The second part in (3·54) has to be calculated knowing Λ(θ) but since we assumed

the target is inside the convex hull we know Λ(θ) ≥ ri. This means log(Λ(θ)
ri

) > 0 and

the xi(t)’s multiplier is a positive value. We can define ci in (3·49) as:

ci = αi[2π +

∫ 2π

0

log(
Λ(θ)

ri
)dθ] (3·53)

2. Target i is on the edge of C:

This is shown in Figure 3·3 for the target filled in green color. For this target,

we need to do the integration for the appropriate limits of the integral since not all

the C(wi) is inside the C.∫
C

xi(t)

d+
i (w)

dw =

∫ 2π

0

∫ Λ(θ)

0

xi(t)

d+
i (r, θ)

drdθ

=

∫ θ2

θ1

∫ ri

0

xi(t)

ri
drdθ +

∫ θ2

θ1

∫ Λ(θ)

ri

xi(t)

r
drdθ

= xi(t)[θ2 − θ1 +

∫ θ2

θ1

log(
Λ(θ)

ri
)dθ]

(3·54)

The second part in (3·54) has to be calculated knowing Λ(θ) but for θ ∈ [θ1 θ2] we

know Λ(θ) ≥ ri. This means log(Λ(θ)
ri

) > 0 and by definition θ2− θ1 > 0 so the xi(t)’s

multiplier is a positive value. We can define ci in (3·49) as:

ci = αi[θ2 − θ1 +

∫ θ2

θ1

log(
Λ(θ)

ri
)dθ] (3·55)

3. Target i is in the interior of C but C(wi) is not completely inside C:

As a sample the target filled with yellow color in Figure 3·3 falls in this case. For

this target, we need to do the integration for the appropriate limits of the integral

89

since not all the C(wi) is inside the C.

∫
C

xi(t)

d+
i (w)

dw =

∫ 2π

0

∫ Λ(θ)

0

xi(t)

d+
i (r, θ)

drdθ

=

∫ 2π

0

∫ r(θ)

0

xi(t)

ri
drdθ +

∫ θ2

θ1

∫ Λ(θ)

ri

xi(t)

r
drdθ

= xi(t)[

∫ 2π

0

r(θ)

ri
dθ +

∫ θ2

θ1

log(
Λ(θ)

ri
)dθ]

(3·56)

The Λ(θ) is illustrated the same as the previous case but is only defined for the values

of θ ∈ [θ1 θ2]. The two angles are illustrated in Figure 3·3 for the target in yellow.

Again since Λ(θ) for the above θ values is greater than ri so log(Λ(θ)
ri

) > 0 and we

know r(θ) > 0 so the xi(t)’s multiplier is a positive value. We can define ci in (3·49)

as:

ci = αi[

∫ 2π

0

r(θ)

ri
dθ +

∫ θ2

θ1

log(
Λ(θ)

ri
)dθ] (3·57)

The significance of J2(t) is that it accounts for the movement of agents through

P (w, s(t)) and captures the target state values through R(w, t). Introducing this term

in the objective function in the following creates a non-zero gradient even if the agent

trajectories are not passing through any targets. We now combine the two metrics in

(3·25) and (3·48) and define problem P3.2:

P3.2 : min
u(t),θ(t)

J(T) =
1

T

∫ T

0

[J1(t) + J2(t)]dt (3·58)

In this problem, the second term is responsible for adjusting the trajectories towards

the targets by creating a potential field, while the first term is the original performance

metric which is responsible for adjusting the trajectories so as to maximize the data

collected once an agent is within a target’s sensing range. It can be easily shown that

the results in (3·38) hold for problem P3.2 as well, through the same Hamiltonian

analysis presented previously. When sj(t) follows the parametric functions in (3·41),

90

(a) Mission Space with dots as target locations

(b) R Function at a sample time t

Figure 3·4: R function illustration

91

the new metric simply becomes a function of the parameter vector Θ and we have:

min
Θ∈FΘ

J(Θ, T) =
1

T

∫ T

0

[J1(Θ, t) + J2(Θ, t)]dt (3·59)

The new objective function’s derivative follows the same procedure that was described

previously. The first part’s derivative can be calculated from (3·43). For the second

part we have:

d

dΘ

∫ τk+1

τk

∫
C
P (w,Θ, t)R(w,Θ, t)dwdt

=

∫ τk+1

τk

∫
C

[dP (w,Θ, t)

dΘ
R(w,Θ, t) + P (w,Θ, t)

dR(w,Θ, t)

dΘ

]
dwdt

(3·60)

In the previous section, we raised the problem of no events being excited in a

sample realization, in which case the total derivative in (3·43) is zero and the algorithm

in (3·12) stalls. Now, looking at (3·60) we can see that if no events occur the second

part in the integration which involves dR(w,Θ,t)
dΘ

will be zero, since
∑M

i=1 x
′
i(t) = 0 at all

t. However, the first part in the integral does not depend on the events, but calculates

the sensitivity of P (w,Θ, t) in (3·47) with respect to the parameter Θ. Note that the

dependence on Θ comes through the parametric description of s(t) through (4·35).

This term ensures that the algorithm in (3·12) does not stall and adjusts trajectories

so as to excite the desired events.

3.4 Simulation Results

We provide some simulation results based on an elliptical parametric description for

the trajectories in (4·35). The elliptical trajectory formulation is:

sxj (t) = Aj + aj cos ρj(t) cosφj − bj sin ρj(t) sinφj
syj (t) = Bj + aj cos ρj(t) sinφj + bj sin ρj(t) cosφj

(3·61)

92

Here, Θj = [Aj, Bj, aj, bj, φj] where Aj, Bj are the coordinates of the center, aj and bj

are the major and minor axis respectively while φj ∈ [0, π) is the ellipse orientation

which is defined as the angle between the x axis and the major axis of the ellipse.

The time-dependent parameter ρj(t) is the eccentric anomaly of the ellipse. Since an

agent is moving with constant speed of 1 on this trajectory, based on (3·38), we have

ṡxj (t)
2 + ṡyj (t)

2 = 1, which gives

ρ̇j(t) =
[(
a sin ρj(t) cosφj + bj cos ρj(t) sinφj

)2

+
(
a sin ρj(t) sinφj − bj cos ρj(t) cosφj

)2]− 1
2

(3·62)

The first case we consider is a problem with one agent and seven targets located on

a circle, as shown in Figure 3·5. We consider a deterministic case with σi(t) = 0.5

for all i. The other problem parameters are T = 50, µij = 100, ri = 0.2 and αi = 1.

A target’s sensing range is denoted with solid black circles with the target location

at the center. The blue polygon indicates the convex hull produced by the targets.

The direction of motion on a trajectory is shown with the small arrow. Starting with

an initial trajectory shown in light blue, the on-line trajectory optimization process

converges to the trajectory passing through all targets in an efficient manner (shown

in dark solid blue). In contrast, starting with this trajectory - which does not pass

through any targets - problem P3.1 does not converge and the initial trajectory

remains unchanged. At the final trajectory, J∗1 = 0.0859 and J∗ = 0.2128. Using the

obvious shortest path solution, the actual optimal value for J1 is 0.0739 that results

from moving on the edges of the convex hull (which allows for shorter agent travel

times).

In the second case, 7 targets are randomly distributed and two agents are coop-

eratively collecting the data. The problem parameters are σi = 0.5, µij = 10, ri =

0.5, αi = 1, T = 50. The initial trajectories for both agents are shown in light green

93

and blue respectively. We can see that both agent trajectories converge so as to

cover all targets, shown in dark green and blue ellipses. At the final trajectories,

J∗1 = 0.1004 and J∗ = 0.2979. Note that we may use these trajectories to initialize

the corresponding TPBVP, another potential benefit of this approach. This is a much

slower process which ultimately converges to J∗1 = 0.0991 and J∗ = 0.2776.

94

Figure 3·5: One agent and seven target scenario

95

Figure 3·6: Two agent and seven targets scenario

96

Chapter 4

Data Harvesting Problem

4.1 Problem Formulation

Following what we saw in the previous chapter, we consider a data harvesting problem

where N mobile agents collect data from M stationary targets in a two-dimensional

mission space S. Each agent may visit one or more of the M targets, collect data

from them, and deliver them to a base. It then continues visiting targets, possibly the

same as before or new ones, and repeats this process. The objective of the team of

agents is to deliver the most amount of data in a fixed time interval T . This problem

is more complex than the case of data collection introduced in previous chapter as

the data has to delivered to the base in minimum time as well as being collected from

the target points.

4.1.1 Queueing Model

The data harvesting problem described above can be viewed as a polling system

where mobile agents are serving the targets by collecting data and delivering it to

the base. As seen in Figure 4·1, there are three sets of queues. The first set includes

the data contents Xi(t) ∈ R+ at each target i = 1, ...,M where we use σi(t) as the

instantaneous inflow rate. In general, we treat {σi(t)} as a random process assumed

only to be piecewise continuous; we will treat it as a deterministic constant only for

the Hamiltonian analysis in the next section. Thus, at time t, Xi(t) is a random

variable resulting from the random process {σi(t)}.

97

X1

. . .
Xi

XM

P11 PMN

. . .

Zij

PB1 PBN. . .

Y1

. . .

YMYi

Figure 4·1: Data harvesting queueing model forM targets andN agents

The second set of queues consists of data contents Zij(t) ∈ R+ onboard agent j

collected from target i. The last set consists of queues Yi(t) ∈ R+ containing data at

the base, one queue for each target, delivered by some agent j. Note that {Xi(t)},

{Zij(t)} and {Yi(t)} are also random processes.

In Figure 4·1 collection and delivery switches are shown by pij and p
Bj

. These

switches are “on” when agent j is connected to target i or the base respectively. We

model the switches by a linear function of the distance to the target and base within

their respective finite mutual sensing ranges rij and r
Bj

.

All queues are modeled as flow systems whose dynamics are given next (however,

as we will see, the agent trajectory optimization is driven by events observed in the

underlying system where queues contain discrete data packets so that this modeling

device has minimal effect on our analysis).

Let sj(t) = [sxj (t), s
y
j (t)] ∈ S be the position of agent j at time t, Then the state

98

variable of the system can now be defined as

X(t) = [X1(t), . . . , XM(t), Y1(t), . . . , YM(t),

Z11(t), . . . , ZMN(t), sx1(t), sy1(t), . . . , sxN(t), syN(t)]
(4·1)

The position of the agent follows single integrator dynamics at all time:

ṡxj (t) = uj(t) cos θj(t), ṡyj (t) = uj(t) sin θj(t) (4·2)

sxj (0) = XB syj (0) = YB, ∀j

where uj(t) is the scalar speed of the agent (normalized so that 0 ≤ uj(t) ≤ 1),

0 ≤ θj(t) < 2π is the angle relative to the positive direction and [XB, YB] is the

location of the base. Thus, we assume that the agent controls its orientation and

speed. Note that the agent states {sj(t)}, j = 1, . . . , N , are also random processes

since the controls are generally dependent on the random queue states. Thus, we

ensure that all random processes are defined on a common probability space.

An agent is represented as a particle, so that we will omit the need for any

collision avoidance control. The agent dynamics above could be more complicated

without affecting the essence of our analysis, but we will limit ourselves here to (4·2).

Following the same idea as in the collection problem in previous chapter, for this

specific data harvesting problem, we consider a set of data sources as points wi ∈ S,

i = 1, . . . ,M, with associated ranges rij, so that agent j can collect data from wi only

if the Euclidean distance dij(t) = ‖wi − sj(t)‖ satisfies dij(t) ≤ rij. This means the

C(wi) d that was introduced in previous chapter is assumed to be a disk with radius

rij. Similarly, the base is at w
B

= [XB, YB] ∈ S which receives all data collected

by the agents. An agent can only deliver data to the base if the Euclidean distance

d
Bj

(t) = ‖w
Bj
− sj(t)‖ satisfies d

Bj
(t) ≤ rBj. Using a function p : S × S → [0, 1], we

99

define the function pij(t) representing the collection switches in Figure 4·1 as:

pij(t) = p(wi, sj(t)) (4·3)

pij(t) is viewed the same way defined in (3·23) with all conditions A1 through A4

hold. Similarly, we define:

p
Bj

(t) = p(w
B
, sj(t)) (4·4)

As described before, the maximum rate of data collection from target i by agent j is

µij and the instantaneous rate is µijpij(t) if j is connected to i.

Now we can define the rest of state dynamics. Dynamics of Xi(t), assuming that

agent j is connected to it, are the same as defined in (3·23):

Ẋi(t) =

0 if Xi(t) = 0 and σi(t) ≤ µijpij(t)

σi(t)− µijpij(t) otherwise

(4·5)

Obviously, Ẋi(t) = σi(t) if pij(t) = 0 for all j = 1, . . . , N .

In order to express the dynamics of Zij(t), let

µ̃ij(t) =

min

(
σi(t)
pij(t)

, µij

)
if Xi(t) = 0 and pij(t) > 0

µij otherwise

(4·6)

This gives us the dynamics as the following:

Żij(t) =

0 if Zij(t) = 0 and µ̃ij(t)pij(t)− βijpBj(t) ≤ 0

µ̃ij(t)pij(t)− βijpBj(t) otherwise

(4·7)

where βij is the maximum rate of data from target i delivered by agent j. For

100

simplicity, we assume that: (A5) ‖wi − wB‖> rij + rBj for all i = 1, . . . ,M and j =

1, . . . , N , i.e., the agent cannot collect and deliver data at the same time. Therefore,

in (4·7) it is always the case that for all i and j, pij(t)pBj(t) = 0.

Finally, dynamics of Yi(t) depend on Zij(t), the content of the on-board queue

of each agent j from target i as long as p
Bj

(t) > 0. We define

βi(t) =
N∑
j=1

βijpBj(t)1[Zij(t) > 0] (4·8)

to be the total instantaneous delivery rate for target i data, so that the dynamics of

Yi(t) are:

Ẏi(t) = βi(t) (4·9)

4.1.2 The Hybrid System

Taking into account the state vector in (4·1) and the dynamics in (4·2), (4·5), (4·7)

and (4·9), the data harvesting process is a stochastic hybrid system. Discrete modes

of the system are agents visiting a target, agents visiting a base and agents moving

not connected to any target or base. The dynamics of agent’s state is not changing in

this system however, it is possible to add other modes for the agents such as stopping

at targets or base. Let’s define two distance functions as below:

d+
ij(t) = max(0, dij(t)− rij), d+

Bj
(t) = max(0, d

Bj
(t)− r

Bj
) (4·10)

The above parameters are zero if the agent j is at target i or the base respectively.

Now following the previous for type of events that we say in previous chapter for a

simpler system, we define a total of seven event types for the data harvesting system.

These events are listed in Table 4.1 (the superscript 0 denotes events causing a variable

to reach a value of zero from above and the superscript + denotes events causing a

variable to become strictly positive from a zero value).

101

Table 4.1: Hybrid System Events

Event Name Description

1. ξ0
i Xi(t) hits 0, for i = 1, . . . ,M

2. ξ+
i Xi(t) leaves 0, for i = 1, . . . ,M .

3. ζ0
ij Zij(t) hits 0, for i = 1, . . . ,M , j = 1, . . . , N

4. δ+
ij d+

ij(t) leaves 0, for i = 1, . . . ,M , j = 1, . . . , N

5. δ0
ij d+

ij(t) hits 0, for i = 1, . . . ,M , j = 1, . . . , N

6. ∆+
j d+

Bj
(t) leaves 0, for j = 1, . . . , N

7. ∆0
j d+

Bj
(t) hits 0, for j = 1, . . . , N

Observe that each of these events causes a change in at least one of the state

dynamics in (4·5), (4·7), (4·9). For example, ξ0
i causes a switch in (4·5) from Ẋi(t) =

σi(t) − µijpij(t) to Ẋi(t) = 0. Also note that we have omitted an event ζ+
ij for

Zij(t) leaving 0 since this event is immediately induced by δ0
ij when agent j comes

within range of target i and starts collecting data causing Zij(t) to become positive if

Zij(t) = 0 and Xi(t) > 0. Finally, note that all events above are directly observable

during the execution of any agent trajectory and they do not depend on our model

of flow queues. For example, if Xi(t) becomes zero, this defines event ξ0
i regardless of

whether the corresponding queue is based on a flow or on discrete data packets; this

observation is very useful in the sequel. A high level hybrid automaton is presented

in Figure 4·2 from the point of view of one target i and one agent j. This automaton

becomes much more complicated once more targets and agents are to be included.

4.1.3 Performance Measure

Our objective is to maintain minimal data content at all target queues, while maxi-

mizing the contents of the delivered data at the base queues. Thus, we define J1(t)

to be the weighted sum of expected target queues content (recalling that {σi(t)} are

102

Figure 4·2: One target i and one agent j hybrid automaton

random processes):

J1(t) =
1

MX

E[
M∑
i=1

αiXi(t)] (4·11)

where the weight αi represents the importance factor of target i and MX is a normal-

izing factor. As you notice this is exactly as we defined J1 in (3·24). Here, unlike the

previous chapter, the data queues are not only at the targets so similarly, we define

a weighted sum of expected base queue contents:

J2(t) =
1

MY

E[
M∑
i=1

αiYi(t)] (4·12)

Here MY again is a normalizing factor. Therefore, our optimization objective may be

a convex combination of (4·11) and (4·12). We set to define the problem P4.1 as

P4.1 : min
u(t),θ(t)

J(T) =
1

T

∫ T

0

(
qJ1(t)− (1− q)J2(t)

)
dt (4·13)

103

Figure 4·3: Two trajectories with same objective function value

Similar to the collection problem in previous chapter, due to the topology of the data

harvesting problem in which only a finite number of targets exist in the mission space

(with finite size sensing range), for many trajectories the value of objective function

is constant. This means we will see no gradient in the objective function. Simply,

if a trajectory does not pass through any target means the system is always in the

mode where agents are moving without being connected to any target or base and

the value of J is calculated as following:

J(T) =
q

MXT

∫ T

0

tσi(t)dt (4·14)

This is illustrated in Figure 4·3 where two different trajectories are shown for the

agent. The blue and red trajectories shown in dotted curves pass through non of the

targets resulting in the same objective value for both. In general an infinite number

of these trajectories can be found and this large plateau in the objective function

creates real problem for the gradient based methods. Next we discuss two nobel

additions to the objective function that allow us to apply gradient based methods to

such problems.

104

4.1.4 Agent’s Utilization

We need to ensure that the agents are controlled so as to maximize their utilization,

i.e., the fraction of time spent performing a useful task by being within range of a

target or the base. Equivalently, we aim to minimize the non-productive idling time

of each agent during which it is not visiting any target or the base.

The idling time for agent j occurs when d+
ij(t) > 0 for all i and d+

Bj
(t) > 0. We

define the idling function Ij(t):

Ij(t) = log

(
1 + d+

Bj
(t)

M∏
i=1

d+
ij(t)

)
(4·15)

This function has the following properties. First, Ij(t) = 0 if and only if the product

term inside the bracket is zero, i.e., agent j is visiting a target or the base; otherwise,

Ij(t) > 0. Second, Ij(t) is monotonically nondecreasing in the number of targets

M . The logarithmic function is selected so as to prevent the value of Ij(t) from

dominating those of J1(·) and J2(·) when included in a single objective function. We

define:

J3(t) =
1

MI

E[
N∑
j=1

Ij(t)] (4·16)

where MI is a weight for the idling time effect relative to J1(·) and J2(·). Note

that Ij(t) is also a random variable since it is a function of the agent states sj(t),

j = 1, . . . , N .

4.1.5 Event Excitation

Following what we introduced in Section 3.3.1, we use the same definition for R(w, t):

R(w, t) =
M∑
i=1

αiXi(t)

d+
i (w)

(4·17)

105

where w ∈ S, d+
i (w) = max(‖wi − w‖, ri) and ri = minj rij. Extending the same

definition to capture the effect of the base in the problem, for each agent we define a

function RBj(w, t) that generates a density of the amount of data onboard agent j as

the following: Also using the same logic we define

R
Bj

(w, t) =

∑M
i=1 αiZij(t)

d+
B

(w)
(4·18)

where d+
B

(w) = max(‖w
B
− w‖, r

B
) is a constant and r

B
= minj rBj . The intuition

behind (4·18) is that if agent j is carrying data meaning
∑M

i=1 Zij(t) > 0 then it feels

a higher density around the base. In other words, we create a fictitious target point

at the base for agents that are carrying data.

Now following the (3·47), for each agent j we define:

Pj(w, t) = ‖sj(t)− w‖2 (4·19)

which again provides the interaction between agent j and the environment in terms of

a quadratic travel cost for from agent j’s position sj to each point w. Finally, similar

to (3·48) we have:

J4(t) =
1

MR

E
[N∑
j=1

∫
C

(
R(w, t) +R

Bj
(w, t)

)
Pj(w, t)dw

]
(4·20)

Where MR is a normalizing factor and C is the convex hull built by targets and the

base.

4.1.6 Final Cost

Finally, we define a terminal cost at T capturing the expected value of the amount of

data left on board the agents, noting that the effect of this term vanishes as T goes

106

to infinity as long as all E[Zij(T)] remain bounded:

Jf (T) =
1

TMZ

E
[M∑
i=1

N∑
j=1

αiZij(T)
]

(4·21)

where MZ again is a normalizing factor. We might not take into account this final

cost when the trajectories are considered to be periodically used. For simplicity, we

will in the sequel assume that αi = 1 for all i.

4.1.7 Optimization Problem

We can now formulate a stochastic optimization problem P4.2 where the control vari-

ables are the agent speeds and headings denoted by the vectors u(t) = [u1(t), . . . , uN(t)]

and θ(t) = [θ1(t), . . . , θN(t)] respectively (omitting their dependence on the full sys-

tem state at t). We combine the objective function components in (4·16), (4·20) and

(4·21) to obtain:

P4.2 : min
u(t),θ(t)

J(T) =
1

T

∫ T

0

(
qJ1(t)− (1− q)J2(t) + J3(t) + J4(t)

)
dt+ Jf (T)

(4·22)

where q ∈ [0, 1] is a weight capturing the relative importance of collected data as

opposed to delivered data. We have used q = 0.5 throughout this study. Also

0 ≤ uj(t) ≤ 1 and 0 ≤ θj(t) < 2π.

Normalizing Factors

We introduced five normalizing factors MX , MY , MI , MR and MZ . This normaliza-

tion ensures that all different segments have similar forces in minimizing the value of

the objective function. We use an upper bound for the value of each segment for the

107

normalizing factor.

MX = MY = MZ = T
∑
i

σi(0)

MI = log
(

1 +
√
L2

1 + L2
2

M+1)
MR =

TL1L2(L2
1 + L2

2)

r

∑
i

σi(0), r =

∑
i ri
M

(4·23)

Using these normalizing factors we can observe that the unattainable minimum of

the total objective function is −0.5 which is if J1 = J3 = J4 = 0 and J2 is at its

maximum of 1 with q = 0.5. This value is obviously never attained.

4.2 Optimization Methodology

In this section, we address P4.2 in a setting where all data arrival processes are

deterministic, so that all expectations in (4·11)-(4·21) degenerate to their arguments.

On a completely similar path with the previous chapter we proceed with a standard

Hamiltonian analysis leading to a Two Point Boundary Value Problem (TPBVP)

where the states and costates are known at t = 0 and t = T respectively. We define

the associated costate vector to (4·1):

λ(t) = [λ1(t), . . . , λM(t), γ1(t), . . . , γM(t), φ11(t), . . . , φMN(t),

ηx1 (t), ηy1(t), . . . , ηxN(t), ηyN(t)]
(4·24)

The Hamiltonian is

H(X,λ,u, θ) =
1

T

[
qJ1(t)− (1− q)J2(t) + J3(t) + J4(t)

]
+
∑
i

λi(t)Ẋi(t) +
∑
i

γi(t)Ẏi(t) +
∑
i

∑
j

φij(t)Żij(t)

+
∑
j

(ηxj (t)uj(t) cos θj(t) + ηyj (t)uj(t) sin θj(t))

(4·25)

108

where the costate equations are

λ̇i(t) = − ∂H
∂Xi

= − 1

T
[
q

MX

+
1

MR

∑
j

∫
S

αiPj(w, t)

d+
i (w)

dw] λi(T) = 0

γ̇i(t) = −∂H
∂Yi

=
1− q
TMY

γi(T) = 0

φ̇ij(t) = − ∂H

∂Zij
= − 1

TMR

∫
S

αiPj(w, t)

d+
B

(w)
dw φij(T) =

∂Jf
∂Zij

∣∣∣
T

(4·26)

η̇xj (t) =− ∂H

∂sxj

=−

[
1

TMI

∂Ij(t)

∂sxj
+

1

TMR

∑
j

∫
S

(R(w, t) +RBj(w, t))
∂Pj(w, t)

∂sxj
dw

+
∑
i

∂

∂sxj
λi(t)Ẋi(t) +

∑
i

∂

∂sxj
γi(t)Ẏi(t) +

∑
i

∂

∂sxj
φij(t)Żij(t)

] (4·27)

η̇yj (t) =− ∂H

∂syj

=−

[
1

TMI

∂Ij(t)

∂syj
+

1

TMR

∑
j

∫
S

(R(w, t) +RBj(w, t))
∂Pj(w, t)

∂syj
dw

+
∑
i

∂

∂syj
λi(t)Ẋi(t) +

∑
i

∂

∂syj
γi(t)Ẏi(t) +

∑
i

∂

∂syj
φij(t)Żij(t)

] (4·28)

ηxj (T) = ηyj (T) = 0 (4·29)

From (4·25), after some trigonometric manipulations, we get

H(X,λ,u, θ) =
1

T

[
qJ1(t)− (1− q)J2(t) + J3(t) + J4(t)

]
+
∑
i

λi(t)Ẋi(t) +
∑
i

γi(t)Ẏi(t) +
∑
i

∑
j

φij(t)Żij(t)

+
∑
j

uj(t)sgn(ηyj (t))
√
ηxj (t)2 + ηyj (t)

2 sin(θj(t) + ψj(t))

(4·30)

where tanψj(t) =
ηxj (t)

ηyj (t)
for ηyj (t) 6= 0 and ψj(t) = sgn(ηxj (t))π

2
if ηyj (t) = 0.

Applying the Pontryagin principle to (4·25) with (u∗, θ∗) being the optimal control,

109

we have:

H(X∗,λ∗,u∗, θ∗) = min
u(t),θ(t)

H(X,λ,u, θ) (4·31)

From (4·30) we easily see that we can always make the uj(t) multiplier to be negative,

hence, recalling that 0 ≤ uj(t) ≤ 1,

u∗j(t) = 1 (4·32)

Following the Hamiltonian definition in (4·25) we have:

∂H

∂θj
= −ηxj (t)uj(t) sin θj(t) + ηyj (t)uj(t) cos θj(t) (4·33)

and setting ∂H
∂θj

= 0 the optimal heading θ∗j (t) should satisfy:

tan θ∗j (t) =
ηyj (t)

ηxj (t)
(4·34)

Since u∗j(t) = 1, we only need to evaluate θ∗j (t) for all t ∈ [0, T]. This is accomplished

by discretizing the problem in time and numerically solving a TPBVP with a for-

ward integration of the state and a backward integration of the costate. Solving this

problem, quickly becomes intractable as the number of agents and targets grows.

We again resort to parametric representation of the trajectories and study two

general parametric trajectory descriptions.

4.2.1 Agent Trajectory Parameterization

Following the same idea in (3·41) we define:

sxj (t) = fx(Θj, ρj(t)), syj (t) = fy(Θj, ρj(t)) (4·35)

where the function ρj(t) controls the position of the agent on its trajectory at time

t and Θj is a vector of parameters controlling the shape and location of the agent j

110

trajectory. Let Θ = [Θ1, . . . ,ΘN]. We now replace problem P4.2 in (4·22) by problem

P4.3:

P4.3 : min
Θ∈FΘ

1

T

∫ T

0

[
qJ1(Θ, t)− (1− q)J2(Θ, t) + J3(Θ, t) + J4(Θ, t)

]
dt+ Jf (Θ, T)

(4·36)

where we return to allowing arbitrary stochastic data arrival processes {σi(t)} so that

P4.3 is a parametric stochastic optimization problem with FΘ appropriately defined

depending on (4·35). The cost function in (4·36) is written as

J(Θ, T ; X(Θ, 0)) = E[L(Θ, T ; X(Θ, 0))] (4·37)

where L(Θ, T ; X(Θ, 0)) is a sample function defined over [0, T] and X(Θ, 0) is the ini-

tial value of the state vector. For convenience, in the sequel we will use L1, L2, L3, L4,

Lf to denote sample functions of J1, J2, J3 ,J4 and Jf respectively. Note that in (4·36)

we suppress the dependence of the four objective function components on the controls

u(t) and θ(t) and stress instead their dependence on the parameter vector Θ. In the

rest of this chapter following the simulation results in Chapter 3, we will consider

two families of trajectories motivated by a similar approach used in the multi-agent

persistent monitoring problem in (Lin and Cassandras, 2015): elliptical trajectories

and a Fourier series trajectory representation which is more general and better suited

for non-uniform target topologies. Following the IPA calculus that was introduced in

3.2 we can calculate an unbiased estimate for the derivative of L(Θ, T ; X(Θ, 0)) with

respect to Θ. As mentioned before, the value of the IPA approach is twofold: (i)

The sample gradient ∇L(Θ, T) can be obtained on line based on observable sample

path data only, and (ii) ∇L(Θ, T) is an unbiased estimate of ∇J(Θ, T) under mild

technical conditions as shown in (Cassandras et al., 2010). Therefore, we can use

111

∇L(Θ, T) in a standard gradient-based stochastic optimization algorithm

Θl+1 = Θl − ν l∇L(Θl, T), l = 0, 1, . . . (4·38)

to converge (at least locally) to an optimal parameter vector Θ∗ with a proper selection

of a step-size sequence {ν l} (Kushner and Yin, 2003). We emphasize that this process

is carried out on line, i.e., the gradient is evaluated by observing a trajectory with

given Θ over [0, T] and is iteratively adjusting it until convergence is attained.

112

Objective Function Gradient

The sample function gradient ∇L(Θ, T) needed in (4·38) is obtained from (4·36)

assuming a total of K events over [0 T] with τ
K+1

= T and τ0 = 0:

∇L(Θ, T ; X(Θ; 0)) =
1

T
∇
[∫ T

0

(
qL1(Θ, t)− (1− q)L2(Θ, t) + L3(Θ, t)

+ L4(Θ, t)
)
dt
]

+∇Lf (Θ, T)

=
1

T
∇
[K∑
k=0

∫ τk+1

τk

(
qL1(Θ, t)− (1− q)L2(Θ, t) + L3(Θ, t)

+ L4(Θ, t)
)
dt
]

+∇Lf (Θ, T)

=
1

T

[K∑
k=0

q
(∫ τk+1

τk

∇L1(Θ, t)dt+ L1(Θ, τk+1)τ ′k+1 − L1(Θ, τk)τ
′
k

)
− (1− q)

(∫ τk+1

τk

∇L2(Θ, t)dt+ L2(Θ, τk+1)τ ′k+1 − L2(Θ, τk)τ
′
k

)
+
(∫ τk+1

τk

∇L3(Θ, t)dt+ L3(Θ, τk+1)τ ′k+1 − L3(Θ, τk)τ
′
k

)
+
(∫ τk+1

τk

∇L4(Θ, t)dt+ L4(Θ, τk+1)τ ′k+1 − L4(Θ, τk)τ
′
k

)]
+∇Lf (Θ, T)

=
1

T

[K∑
k=0

∫ τk+1

τk

(
q∇L1(Θ, t)− (1− q)∇L2(Θ, t) +∇L3(Θ, t)

+∇L4(Θ, t)
)
dt
]

+∇Lf (Θ, T)

(4·39)

The last step follows from the continuity of the state variables which causes

adjacent limit terms in the sum to cancel out. Therefore, ∇L(Θ, T) does not have any

direct dependence on any τ ′k; this dependence is indirect through the state derivatives

involved in the four individual gradient terms. Referring to (4·11), the first term

involves ∇L1(Θ, t) which is as a sum of X ′i(t) derivatives. Similarly, ∇L2(Θ, t) is

a sum of Y ′i (t) derivatives and ∇Lf (Θ, T) requires only Z ′ij(T). The third term,

113

∇L3(Θ, t), requires derivatives of Ij(t) in (4·15) which depend on the derivatives of

the max function in (4·10) and the agent state derivatives s′j(t) with respect to Θ.

The term ∇L4(Θ, t) needs the values of X ′i(t) and Z ′ij(t). The gradients of the last

two terms are derived in the appendix. Possible discontinuities in these derivatives

occur when any of the last four events in Table 4.1 takes place.

In summary, the evaluation of (4·39) requires the state derivatives X ′i(t), Z
′
ij(t),

Y ′i (t), and s′j(t). The latter are easily obtained for any specific choice of fx and fy in

(4·35) and are shown in Appendix A.2.1. The former require a rather laborious use

of (3·16), (3·18) and (3·19).

4.3 IPA Derivatives Calculation

In this section, we derive all event time derivatives and state derivatives with respect

to the controllable parameter Θ for each event by applying the IPA equations.

1. Event ξ0
i : This event causes a transition from Xi(t) > 0, t < τk to Xi(t) = 0,

t ≥ τk. The switching function is gk(Θ,X) = Xi so ∂gk
∂Xi

= 1. From (3·19) and (4·5):

τ
′

k = −
(∂gk
∂Xi

fk(τ
−
k)
)−1(

g′k +
∂gk
∂Xi

X ′i(τ
−
k)
)

= − X ′i(τ
−
k)

σi(τk)− µijpij(τk)

(4·40)

where agent j is the one connected to i at t = τk and we have used the assumption

that two events occur at the same time w.p. 0, hence σi(τ
−
k) = σi(τk). From (3·16),

(3·18) and (3·19), since Ẋi(t) = 0, for τk ≤ t < τk+1:

d

dt
X ′i(t) =

∂Ẋi(t)

∂Xi(t)
X ′i(t) + Ẋ ′i(t) = 0 (4·41)

114

X ′i(τ
+
k) = X ′i(τ

−
k) +

[(
σi(τk)− µijpij(τk)

)
− 0
]
τk
′

= X ′i(τ
−
k)−

X ′i(τ
−
k)
(
σi(τk)− µijpij(τk)

)
σi(τk)− µijpij(τk)

= 0

(4·42)

For Xr(t), r 6= i, the dynamics of Xr(t) in (4·5) are unaffected and we have:

X ′r(τ
+
k) = X ′r(τ

−
k) (4·43)

If Xr(τk) > 0 and agent l is connected to it, then

d

dt
X ′r(t) =

∂Ẋr(t)

∂Xr(t)
X ′r(t) + Ẋ ′r(t)

= σ′r(t)− µrlp′rl(τk) = −µrlp′rl(t)
(4·44)

and if Xr(t) = 0 in [τk, τk+1] or if no agents are connected to i, then d
dt
X ′r(t) = 0.

For Yr(t), r = 1, . . . ,M , the dynamics of Yr(t) in (4·9) are not affected by the event

ξ0
i at τk, hence

Y ′r (τ
+
k) = Y ′r (τ

−
k) (4·45)

and since Ẏr(t) = βr(t), for τk ≤ t < τk+1:

d

dt
Y ′r (t) =

∂Ẏr(t)

∂Yr(t)
Y ′r (t) + Ẏ ′r (t) = β′r(t) (4·46)

For Zij(t), we must have Zij(τk) > 0 since Xi(τ
−
k) > 0, hence µ̃ij(τ

−
k) > 0 and from

(3·16):

Z ′ij(τ
+
k) = Z ′ij(τ

−
k) +

[
Żij(τ

−
k)− Żij(τ+

k)
]
τ ′k

= Z ′ij(τ
−
k) +

[
µ̃ij(τ

−
k)− µ̃ij(τ+

k)
]
pij(τk)τ

′
k

(4·47)

Since Xi(τ
−
k) > 0, from (4·6) we have µ̃ij(τ

−
k) = µij. At τ+

k , j remains connected to

115

target i with µ̃ij(τ
+
k) = σi(τ

+
k)/pij(τk) = σi(τk)/pij(τk) and we get

Z ′ij(τ
+
k) = Z ′ij(τ

−
k) +

−X ′i(τ−k)
[
µijpij(τk)− σi(τk)

]
σi(τk)− µijpij(τk)

= Z ′ij(τ
−
k) +X ′i(τ

−
k)

(4·48)

From (3·18) for τk ≤ t < τk+1:

d

dt
Z ′ij(t) =

∂Żij(t)

∂Zij(t)
Z ′ij(t) + Ż ′ij(t)

= Ż ′ij(t) =
(
µ̃ij(t)p

′
ij(t)− βijp′Bj(t)

) (4·49)

Since µ̃ij(t) = σi(t)/pij(t) for the agent which remains connected to target i after this

event, it follows that ∂
∂Θ

[µ̃ij(t)pij(t)] = 0. Moreover, p
Bj

(t) = 0 by our assumption

that agents cannot be within range of the base and targets at the same time and we

get

d

dt
Z ′ij(t) = 0 (4·50)

Otherwise, for r 6= j, we have µ̃ir(t) = 0 and we get:

d

dt
Z ′ir(t) = −βirp′Br(t) (4·51)

Finally, for Zrj(t), r 6= i we have Z ′rj(τ
+
k) = Z ′rj(τ

−
k). If Zrj(t) = 0 in [τk, τk+1), then

d
dt
Z ′rj(t) = 0. Otherwise, we get d

dt
Z ′rj(t) from (4·49) with i replaced by r.

2. Event ξ+
i : This event causes a transition from Xi(t) = 0, t ≤ τk to Xi(t) > 0,

t > τk. Note that this transition can occur as an exogenous event when an empty

queue Xi(t) gets a new arrival in which case we simply have τ ′k = 0 since the exoge-

nous event is independent of the controllable parameters. In the endogenous case,

however, we have the switching function gk(Θ,X) = σi(t) − µijpij(t) in which agent

j is connected to target i at t = τk. Assuming s′j(t) = [
∂sxj
∂Θ

∂syj
∂Θ

]> and ṡj = [ṡxj ṡ
y
j]
>,

116

from (3·19):

τk
′ = −

(∂gk
∂sj

s′j(τk)
)(
g′kṡj(τk)

)−1

(4·52)

At τk we have σi(τk) = µijpij(τk). Therefore from (3·16):

X ′i(τ
+
k) = X ′i(τ

−
k) + [Ẋi(τ

−
k)− Ẋi(τ

+
k)]τk

′

= X ′i(τ
−
k) +

(
0− σi(τk) + µijpij(τk)

)
τk
′ = X ′i(τ

−
k)

(4·53)

Having Xi(t) > 0 in [τk, τk+1) we know Ẋi(t) = σi(t) − µijpij(t) therefor, we can get

d
dt
X ′i(t) from (4·44) with r and l replaced by i and j. For Xr(t), r 6= i, if Xr(τk) > 0

and agent l is connected to r then Ẋr(τk) = σr(τk)−µrlprl(τk), therefor, we get X ′r(τ
+
k)

from (4·43) while in [τk, τk+1) we have d
dt
X ′r(t) from (4·44). If Xr(τk) = 0 or if no

agent is connected to target r, Ẋr(τk) = 0. Thus, X ′r(τ
+
k) = X ′r(τ

−
k) and d

dt
X ′r(t) = 0.

For Yr(t), r = 1, . . . ,M the dynamics of Yr(t) in (4·9) are not affected by the event

at τk hence, we can get Y ′r (τ
+
k) and d

dt
Y ′r (t) in [τk, τk+1) from (4·45) and (4·46) respec-

tively.

For Zij(t) assuming agent j is the one connected to target i, we have:

Z ′ij(τ
+
k) = Z ′ij(τ

−
k) +

[
Żij(τ

−
k)− Żij(τ+

k)
]
τ ′k

= Z ′ij(τ
−
k) +

[
µ̃ij(τ

−
k)− µ̃ij(τ+

k)
]
pij(τk)τ

′
k = Z ′ij(τ

−
k)

(4·54)

In the above equation, µ̃ij(τ
+
k) = µij because Xi(τ

+
k) > 0. Also, µijpij(τk) = σi(τk)

and µ̃ij(τ
−
k) = σi(τk)

pij(τk)
results in µ̃ij(τ

+
k) = µij. For Zil(t), l 6= j , agent l cannot be

connected to target i at τk so we have, Z ′il(τ
+
k) = Z ′il(τ

−
k) and d

dt
Z ′il(t) = 0 in [τk, τk+1).

For Zrl(t) ,r 6= i and l 6= j using the assumption that two events occur at the same

time w.p. 0, the dynamics of Zrl(t) are not affected at τk, hence we get d
dt
Z ′rl(t) from

(4·49) for i and j replaced by r and l.

117

3. Event ζ0
ij: This event causes a transition from Zij(t) > 0 for t < τk to

Zij(t) = 0 for t ≥ τk. The switching function is gk(Θ,X) = Zij(t) so ∂gk
∂Zij

= 1. From

(3·19):

τk
′ = −

(∂gk
∂Zij

fk(τ
−
k)
)−1(

g′k +
∂gk
∂Zij

Z ′ij(τ
−
k)
)

= −
Z ′ij(τ

−
k)

µ̃ij(τ
−
k)pij(τ

−
k)− βijpBj(τ−k)

=
Z ′ij(τ

−
k)

βijpBj(τk)

(4·55)

Since Zij(t) is being emptied at τk, by the assumption that agents can not be in range

with the base and targets at the same time, we have pij(τk) = 0. Then from (3·16):

Z ′ij(τ
+
k) = Z ′ij(τ

−
k) +

[
− βijpBj(τk)− 0

]
τk
′

= Z ′ij(τ
−
k)−

[
βijpBj(τk)

] Z ′ij(τ−k)

βijpBj(τk)
= 0

(4·56)

Since Żij(t) = 0 in [τk, τk+1):

d

dt
Z ′ij(t) =

∂Żij(t)

∂Zij(t)
Z ′ij(t) + Ż ′ij(t) = 0 (4·57)

For Zrl(t), r 6= i or l 6= j, the dynamics in (4·7) are not affected at τk, hence:

Z ′rl(τ
+
k) = Z ′rl(τ

−
k) (4·58)

if Zrl(τk) > 0, the value for d
dt
Z ′rl(t) is calculated by (4·49) with r and l replacing i

and j respectively. If Zrl(τk) = 0 then d
dt
Z ′rl(t) = 0.

For Yi(t) we have βi(τ
+
k) = 0 since the agent has emptied its queue, hence:

Y ′i (τ
+
k) = Y ′i (τ

−
k) +

[
Ẏi(τ

−
k)− Ẏi(τ+

k)
]
τ ′k

= Y ′i (τ
−
k) + [βijpBj(τk)− 0]

Z ′ij(τ
−
k)

βijpBj(τk)

= Y ′i (τ
−
k) + Z ′ij(τ

−
k)

(4·59)

118

In [τk, τk+1) we can get d
dt
Y ′i (t) = 0. For Yr(t), r 6= i the dynamics of Yr(t) in

(4·9) are not affected by the event at τk hence, Y ′r (τ
+
k) and d

dt
Y ′r (t) in [τk, τk+1) are

calculated from (4·45) and (4·46) respectively. The dynamics of Xr(t), r = 1, . . . ,M

is are not affected at τk since the event at τk is happening at the base. We have

X ′r(τ
+
k) = X ′r(τ

−
k). If Xr(τk) > 0 then we have d

dt
X ′r(t) from (4·44) and if Xr(τk) = 0

then d
dt
X ′r(t) = 0 in [τk, τk+1).

4. Event δ+
ij : This event causes a transition from d+

ij(t) = 0 for t ≤ τk to

d+
ij(t) > 0 for to t > τk. It is the moment that agent j leaves target i’s range. The

switching function is gk(Θ,X) = dij(t)− rij , from (3·19):

τk
′ = −∂dij

∂sj
s′j(t)

(∂dij
∂sj

ṡj(τk)
)−1

(4·60)

If agent j was connected to target i at τk then by leaving the target, it is possible

that another agent l which is within range with target i connects to that target. This

means Ẋi(τ
+
k) = σi(τk)− µilpil(τk) and Ẋi(τ

−
k) = σi(τk)− µijpij(τk), with pij(τk) = 0,

from (3·16) we have

X ′i(τ
+
k) = X ′i(τ

−
k)− µilpil(τk)τ ′k (4·61)

If Xi(τk) > 0, d
dt
X ′i(t) in [τk, τk+1) is as in (4·44) with r replaced by i and if Xi(τk) = 0

then d
dt
X ′i(t) = 0. On the other hand, if agent j was not connected to target i at τk,

we know that some l 6= j is already connected to target i. This means agent j leaving

target i cannot affect the dynamics of Xi(t) so we have X ′i(τ
+
k) = X ′i(τ

−
k) and d

dt
X ′i(t)

is calculated from (4·44) with r replaced by i.

For Xr(t), r 6= i the dynamics in (4·5) are not affected by the event at τk hence, we

get X ′r(τ
+
k) from (4·43). If Xr(τk) > 0 the time derivative d

dt
X ′r(t) in [τk, τk+1) can be

calculated from (4·44) and if Xr(τk) = 0 then d
dt
X ′r(t) = 0.

For Yr(t), r = 1, . . . , ,M , the dynamics in (4·9) are not also affected by the event at

119

τk hence, we get Yr(τ
+
k) from (4·45) and in [τk, τk+1) the d

dt
Y ′r (t) is calculated from

(4·46).

For Zij(t), the dynamics in (4·7) are not affect at τk, regardless of the fact that agent

j is connected to target i or not. We have Żij(τ
−
k) = µ̃ij(τk)pij(τk) with pij(τk) = 0

and Żij(τ
+
k) = 0, hence from (3·16):

Z ′ij(τ
+
k) = Z ′ij(τ

−
k) +

[
Żij(τ

−
k)− Żij(τ+

k)
]
τ ′k

= Z ′ij(τ
−
k) + µ̃ij(τk)pij(τk)τ

′
k = Z ′ij(τ

−
k)

(4·62)

and in [τk, τk+1) , we have d
dt
Z ′ij(t) = 0 using (4·49) knowing pij(τk) = p

Bj
(τk) = 0.

For Zrl(t), r 6= i or l 6= j, the dynamics of Zrl(t) are not affected at τk hence (4·58)

holds and in [τk, τk+1) again we can use (4·49) with i and j replaced by r and l.

5. Event δ0
ij: This event causes a transition from d+

ij(t) > 0 for t < τk to

d+
ij(t) = 0 for to t ≥ τk. The event is the moment that agent j enters target i’s

range. The switching function is gk(Θ,X) = dij(t) − rij. From (3·19) we can get

τk
′ from (4·60). If no other agent is already connected to target i, agent j connects

to it. Otherwise, if another agent is already connected to target i, no connection is

established. For Xi(t), the dynamics in (4·5) are not affected in both cases, hence,

(4·53) holds. If Xi(t) > 0 in [τk, τk+1) we calculate d
dt
X ′i(t) using (4·44) with l being

the appropriate connected agent to target i. If Xi(τ
−
k) = 0, d

dt
X ′i(t) = 0. For Xr(t),

r 6= i the dynamics in (4·5) are not affected by the event at τk. Hence, we get X ′r(τ
+
k)

from (4·43). If Xr(τk) > 0 we calculate d
dt
X ′r(t) from (4·44) with i replaced by r and

if Xr(τk) = 0 then d
dt
X ′r(t) = 0.

For Yr(t), r = 1, . . . ,M again the dynamics in (4·9) are not affected at τk so both

(4·45) and (4·46) hold.

For Zij(t), with agent j being connected or not to target i at τk the dynamics of

120

Zij(t) are unaffected at τk, hence (4·58) holds for i and j and in [τk, τk+1) the d
dt
Z ′ij(t)

is calculated through (4·49). For Zrl(t), r 6= i or l 6= j the dynamics are unaffected

(4·58) holds again. In [τk, τk+1), d
dt
Z ′rl(t) is given through (4·49) with i and j replaced

by r and l.

6. Event ∆+
j : This event causes a transition from d+

Bj(t) = 0 for t ≤ τk to

d+
Bj(t) ≥ 0 for t > τk. The switching function is gk(Θ,X) = d

Bj
(t)− r

Bj
.

τk
′ = −

∂d
Bj

∂sj
s′j(τk)

(∂d
Bj

∂sj
ṡj(τk)

)−1

(4·63)

Similar to the previous event, the dynamics of Xi(t) are unaffected at τk hence, we

have X ′i(τ
+
k) calculated from (4·53). If Xi(t) > 0 in [τk, τk+1) we calculate d

dt
X ′i(t)

through (4·44) and if Xi(τ
−
k) = 0, d

dt
X ′i(t) = 0.

For Yr(t), r = 1, . . . , ,M , the dynamics of Yr(t) in (4·9) are not affected at τk, hence,

we get Yr(τ
+
k) from (4·45) and in [τk, τk+1), d

dt
Y ′r (t) is calculated from (4·46).

For Zij(t), Using the fact that agent j can only be connected to one target or the

base, we have Żij(τ
−
k) = βij(τk)pBj(τk) with p

Bj
(τk) = 0 and Żij(τ

+
k) = 0, hence (4·58)

holds with i and j replacing r and l. In [τk, τk+1) from (3·18):

d

dt
Z ′ij(t) =

∂Żij(t)

∂Zij(t)
Z ′ij(t) + Ż ′ij(t)

= Ż ′ij(t) = −βijp′Bj(t)
(4·64)

As for Zrl(t), r 6= i or l 6= j the dynamics are unaffected so (4·58) holds. In [τk, τk+1)

we can calculate d
dt
Z ′rl(t) through (4·49) with j replacing l.

7. Event ∆0
j : This event causes a transition from d+

Bj(t) > 0 for t < τk to

d+
Bj(t) = 0 for t ≥ τk. The switching function is gk(Θ,X) = d

Bj
(t) − r

Bj
. Using

(3·19) we can get τk
′ from (4·63). Similar with the previous event we have X ′i(τ

+
k)

121

from (4·53). If Xi(t) > 0 we can get d
dt
X ′i(t) from (4·44) and if Xi(τ

−
k) = 0 then

d
dt
X ′i(t) = 0.

For Yr(t), r = 1, . . . , ,M , we again follow the previous event analysis so (4·45) and

(4·46) hold.

For Zij(t), the analysis is similar to event ∆+
j so we can calculate Z ′ij(τ

+
k) and d

dt
Z ′ij(t)

in [τk, τk+1) from (4·54) and (4·49) respectively. Also for Zrl(t), r 6= i or l 6= j, (4·58)

holds with same reasoning as previous event. In [τk, τk+1) we calculate d
dt
Z ′rl(t) from

(4·49).

In summary, what we have discussed for all events reduces to a simple set of state

derivative dynamics as shown next.

Proposition 4.1. After an event occurrence at t = τk, the state derivatives X ′i(τ
+
k),

Y ′i (τ
+
k), Z ′ij(τ

+
k), with respect to the controllable parameter Θ satisfy the following:

X ′i(τ
+
k) =

0 if e(τk) = ξ0

i

X ′i(τ
−
k)− µilpil(τk)τ

′

k if e(τk) = δ+
ij

X ′i(τ
−
k) otherwise

(4·65)

where l 6= j with pil(τk) > 0 if such l exists and τ
′

k =
∂dij(sj)

∂sj
s′j

(
∂dij(sj)

∂sj
ṡj(τk)

)−1

.

Y ′i (τ
+
k) =

 Y ′i (τ
−
k) + Z ′ij(τ

−
k) if e(τk) = ζ0

ij

Y ′i (τ
−
k) otherwise

(4·66)

Z ′ij(τ
+
k) =

0 if e(τk) = ζ0

ij

Z ′ij(τ
−
k) +X ′i(τ

−
k) if e(τk) = ξ0

i

Z ′ij(τ
−
k) otherwise

(4·67)

where e(τk) = ξ0
i occurs when j is connected to target i.

Proof. See (4·42), (4·53), (4·61), (4·59), (4·45), (4·54), (4·56), (4·48).

122

This result shows that only three of the events in E can actually cause discontin-

uous changes to the state derivatives. Further, note that X ′i(t) is reset to zero after a

ξ0
i event. Moreover, when such an event occurs, note that Z ′ij(t) is coupled to X ′i(t).

Similarly for Z ′ij(t) and Y ′i (t) when event ζ0
ij occurs, showing that perturbations in Θ

can only propagate to an adjacent queue when that queue is emptied.

Proposition 4.2. The state derivatives X ′i(τ
−
k+1), Y ′i (τ

−
k+1) with respect to the con-

trollable parameter Θ satisfy the following after an event occurrence at t = τk:

X ′i(τ
−
k+1) =

 0 if e(τk) = ξ0
i

X ′i(τ
+
k)−

∫ τk+1

τk
µijp

′
ij(u)du otherwise

(4·68)

Y ′i (τ
−
k+1) = Y ′i (τ

+
k) +

∫ τk+1

τk

β′i(u)du (4·69)

where j is such that pij(t) > 0, t ∈ [τk, τk+1).

Proof. See (4·41), (4·44) and (4·46).

Proposition 4.3. The state derivatives Z ′ij(τ
+
k+1) with respect to the controllable pa-

rameter Θ satisfy the following after an event occurrence at t = τk:

i- If j is connected to target i,

Z ′ij(τ
−
k+1) =

 Z ′ij(τ
+
k) if e(τk) = ξ0

i , ζ
0
ij or δ+

ij

Z ′ij(τ
+
k) +

∫ τk+1

τk
µijp

′
ij(u)du otherwise

(4·70)

ii- If j is connected to B with Zij(τk) > 0,

Z ′ij(τ
−
k+1) = Z ′ij(τ

+
k)−

∫ τk+1

τk

βijp
′
Bj

(u)du (4·71)

iii- Otherwise, Z ′ij(τ
−
k+1) = Z ′ij(τ

+
k).

Proof. See (4·49), (4·50), (4·57) and (4·64).

Corollary 4.1. The state derivatives X ′i(t), Z ′ij(t), Y ′i (t) with respect to the con-

trollable parameter Θ are independent of the random data arrival processes {σi(t)},
i = 1, . . . ,M .

123

Proof. Follows directly from the three Propositions.

There are a few important consequences of these results. First, as the Corollary

asserts, one can apply IPA regardless of the characteristics of the random processes

{σi(t)}. This robustness property does not mean that these processes do not affect

the values of the X ′i(t), Z
′
ij(t), Y

′
i (t); this happens through the values of the event

times τk, k = 1, 2, . . ., which are observable and enter the computation of these

derivatives as seen above. Second, the IPA estimation process is event-driven: X ′i(τ
+
k),

Y ′i (τ
+
k), Z ′ij(τ

+
k) are evaluated at event times and then used as initial conditions for

the evaluations of X ′i(τ
−
k+1), Y ′i (τ

−
k+1), Z ′ij(τ

−
k+1) along with the integrals appearing

in Propositions 2,3 which can also be evaluated at t = τk+1. Consequently, this

approach is scalable in the number of events in the system as the number of agents

and targets increases. Third, despite the elaborate derivations in the Appendix, the

actual implementation reflected by the three Propositions is simple. Finally, returning

to (4·39), note that the integrals involving ∇L1(Θ, t), ∇L2(Θ, t) are directly obtained

from X ′i(t), Y
′
i (t), the integral involving ∇L3(Θ, t) is obtained from straightforward

differentiation of (4·15), and the final term is obtained from Z ′ij(T).

Objective Function Optimization

This is carried out using (4·38) with an appropriate step size sequence.

Elliptical Trajectories: Elliptical trajectories are described by their center

coordinates, minor and major axes and orientation. Agent j’s position sj(t) =

[sxj (t), s
y
j (t)] follows the general parametric equation of the ellipse:

sxj (t) = Aj + aj cos ρj(t) cosφj − bj sin ρj(t) sinφj

syj (t) = Bj + aj cos ρj(t) sinφj + bj sin ρj(t) cosφj

(4·72)

124

Here, Θj = [Aj, Bj, aj, bj, φj] where Aj, Bj are the coordinates of the center, aj and bj

are the major and minor axis respectively while φj ∈ [0, π) is the ellipse orientation

which is defined as the angle between the x axis and the major axis of the ellipse.

The time dependent parameter ρj(t) is the eccentric anomaly of the ellipse. Since

the agent is moving with constant speed of 1 on this trajectory from (4·32), we have

ṡxj (t)
2 + ṡyj (t)

2 = 1 which gives

ρ̇j(t) =

(
a sin ρj(t) cosφj + bj cos ρj(t) sinφj

)2

+
(
a sin ρj(t) sinφj − bj cos ρj(t) cosφj

)2

− 1

2

(4·73)

In the data harvesting problem, trajectories that do not pass through the base are

inadmissible since there is no delivery of data. Therefore, we add a constraint to force

the ellipse to pass through w
B

= [wx
B
, wy

B
] where:

wx
B

=Aj + aj cos ρj(t) cosφj − bj sin ρj(t) sinφj

wy
B

=Bj + aj cos ρj(t) sinφj + bj sin ρj(t) cosφj

(4·74)

Using the fact that sin2 ρ(t) + cos2 ρ(t) = 1 we define a quadratic constraint term

added to J(Θ, T ; X(Θ, 0)) with a sufficiently large multiplier. This can ensure the

optimal path passes through the base location. We define Cj(Θj) which appears in

(4·76):

Cj(Θj) = (1− f 1
j cos2 φj − f 2

j sin2 φj − f 3
j sin 2φj)

2 (4·75)

where f 1
j = (

wx
B
−Aj
aj

)2+(
wy
B
−Bj
bj

)2, f 2
j = (

wx
B
−Aj
bj

)2+(
wy
B
−Bj
aj

)2, f 3
j =

(b2j−a2
j)(w

x
B
−Aj)(wyB−Bj)
a2
j b

2
j

.

Multiple visits to the base may be needed during the mission time [0, T]. We can

capture this by allowing an agent trajectory to consist of a sequence of admissible

ellipses. For each agent, we define Ej as the number of ellipses in its trajectory. The

parameter vector Θκ
j with κ = 1, . . . , Ej, defines the κth ellipse in agent j’s trajectory

125

and T κj is the time that agent j completes ellipse κ. Therefore, the location of each

agent is described through κ during [T κ−1
j , T κj] where T 0

j = 0. Since we cannot

optimize over all possible Ej for all agents, an iterative process needs to be performed

in order to find the optimal number of segments in each agent’s trajectory. At each

step, we fix Ej and find the optimal trajectory with that many segments. The process

is stopped once the optimal trajectory with Ej segments is no better than the optimal

one with Ej − 1 segments (obviously, this is not a globally optimal solution). We can

now formulate the parametric optimization problem P4.3e where Θj = [Θ1
j , . . . ,Θ

Ej
j]

and Θ = [Θ1, . . . ,ΘN]:

min
Θ∈FΘ

Je =
1

T

∫ T

0

[
qJ1(Θ, t)− (1− q)J2(Θ, t) + J3(Θ, t) + J4(Θ, t)

]
dt

+MC

N∑
j=1

Cj(Θj) + Jf (Θ, T)

(4·76)

where MC is a large multiplier. The evaluation of ∇Cj is straightforward and

does not depend on any event. (Details are shown in Appendix A.2.1).

Fourier Series Trajectories: The elliptical trajectories are limited in shape

and may not be able to cover many targets in a mission space. Thus, we next

parameterize the trajectories using a Fourier series representation of closed curves

(Zahn and Roskies, 1972). Using a Fourier series function for f and g in (4·35), agent

j’s trajectory can be described as follows with base frequencies fxj and f yj :

sxj (t) = a0,j +

Γxj∑
n=1

an,j sin(2πnfxj ρj(t) + φxn,j)

syj (t) = b0,j +

Γyj∑
n=1

bn,j sin(2πnf yj ρj(t) + φyn,j)

(4·77)

The parameter ρ(t) ∈ [0, 2π], similar to elliptical trajectories, represents the position

of the agent along the trajectory. In this case, forcing a Fourier series curve to pass

126

through the base is easier. For simplicity, we assume a trajectory to start at the base

and set sxj (0) = wx
B

, syj (0) = wy
B

. Assuming ρ(0) = 0, with no loss of generality, we

can calculate the zero frequency terms by means of the remaining parameters:

a0,j = wx
B
−

Γxj∑
n=1

an,j sin(φxn,j), b0,j = wy
B
−

Γyj∑
n=1

bn,j sin(φyn,j) (4·78)

The parameter vector for agent j is

Θj = [fxj , a0,j, . . . , aΓxj
, b0,j, . . . , bΓyj

, φ1,j, . . . , φΓxj
, ξ1,j, . . . , ξΓyj

]

and Θ = [Θ1, . . . ,ΘN]. Note that the shape of the curve is fully represented by the

ratio fxj /f
y
j so one of these can be kept constant. For the Fourier trajectories, the

fact that u∗j = 1 allows us to calculate ρ̇j(t) as follows:

ρ̇j(t) =
1

2π

(
fxj

Γxj∑
n=1

an,jn cos(2πfxj ρj(t) + φxn,j)

)2

+

(
f yj

Γxj∑
n=1

bn,jn cos(2πf yj ρj(t) + φyn,j)

)2

−1/2

(4·79)

Problem P4.3f is the same as P4.3 and there are no additional constraints in

this case:

min
Θ∈FΘ

Jf =
1

T

∫ T

0

[
qJ1(Θ, t)− (1− q)J2(Θ, t) + J3(Θ, t) + J4(Θ, t)

]
dt+ Jf (T) (4·80)

127

4.4 Simulation Results

In this section numerical results are presented to illustrate our approach. The mission

space S is considered to be [0, 10] × [0, 10] in all the presented cases. The first case

to consider is a small mission to see the TPBVP results and the fact that it is not

scalable to bigger problems.

In Case I we consider a two target - two agent setting. We assume deterministic

arrival process with σi = 0.5 for all i. For (4·3) and (4·4) we have used p(w, v) =

max(0, 1− d(w,v)
r

) where r is the corresponding value of rij or r
Bj

. We have µij = 100

and βij = 500 for all i and j. Other parameters used are q = 0.5, rij = r
Bj

= 0.5 and

T = 20. The trajectories comparison from TPBVP, Elliptical and Fourier parametric

solution is shown in Figures 4·4, 4·5, 4·6. In each figure, the trajectories are shown in

top while the actual objective function decline and convergence in the middle graph.

The lower graph shows the total amount of data at targets at any time (In blue) and

the total amount of data at the base (In green).

In the TPBVP results, the main limitation is the size of the time step that can

be considered since the number of control values grows with the number of time steps.

To bring this into prospective, for this sample problem with T=20 we considered 300

time steps meaning 300 value for the heading of each agent needs to be calculated

which brings the total number of controls to 600. In contrast for the same problem

the total number of controls for the elliptical trajectories are 10 parameters and for

the fourier trajectories is 28. This explains why the TPBVP can not be a viable

solution for larger value of T .

In Table 4.2, the actual values for J∗, J∗1 , J∗2 are shown for the three different tra-

jectories of Figure 4·4.,4·5,4·6. Note that the objective is to minimize J by minimizing

J1 and maximizing J2.

Next in Case II we consider 9 targets and 2 agents. The base is located at the

128

Table 4.2: Results Comparison for Case I

Method J∗ J∗1 J∗2

TPBVP 0.272 0.098 0.038

Elliptical 0.255 0.092 0.095

Fourier 0.202 0.089 0.095

Table 4.3: Results Comparison for Case II

Method J∗ J∗1 J∗2

Elliptical 0.19 0.090 0.124

Fourier 0.18 0.069 0.117

center of the mission space. We have σi(t) = 0.5, µij = 50 and βij = 500 for all i

and j. Other parameters used are q = 0.5, rij = 0.55, r
Bj

= 0.65 and T = 50. In

Figure 4·7 the solution with two ellipses in each agent’s trajectory is shown. As can

be seen the trajectory correctly finds all the target locations and empties the target

queues periodically. In Figure 4·8 the fourier trajectories is shown. The two graphs

on the bottom of the figures show the objective function value and instantaneous

total content at targets and base. The simulation results for Case II are in Table 4.3.

Table 4.4: Results Comparison for Case III

Method J∗ J∗1 J∗2

Elliptical 0.35 0.12 0.09

Fourier 0.23 0.09 0.1

Fourier (Stochastic Arrival) 0.23 0.13 0.13

The third case has 12 targets that are uniformly distributed in the mission space.

Here we try to examine the robustness of our approach with respect to the arrival

129

rate process at targets. We use the same parameters as in case II and solve the

problem for deterministic σi(t) = 0.5 using the elliptical trajectories and fourier

trajectories. The same mission is then simulated assuming that σi(t) is a stochastic

process with piecewise linear arrival rate. The average arrival rate is kept at 0.5. The

results in Figure 4·9,4·10,4·11 and Table 4.4 shows that using the Fourier parametric

trajectories, almost same performance can be achieved by the optimization algorithm

in the stochastic settings.

4.5 Comparison with a Graph Based Algorithm

The final parametric trajectories can provide us with a sequence of targets visit, same

as in a tour selection algorithm that uses the underlying graph topology of the mission

space to come up with sequences.

We have compared the results of our approach with a graph topology algorithm

called Path Splitter Heuristic (PSH) developed in (Moazzez-Estanjini and Paschalidis,

2012). This algorithm start with the best hamiltonian sequence and then uses a

heuristic method to divide the hamiltonian tour into several sub-tours that go through

a few targets and then go back to the base. The algorithm then provides a sequence

of these sub-tours for each agent. We compare the sequences from Case I and Case

II in both elliptical and fourier trajectories and results are shown in Table 4.5 and

4.5. For a fair comparison we adopt each sequence and apply it with the same system

dynamic in our model. Meaning, the agent’s can pick up the data once within range of

the targets. This however is not the basics modeling assumptions used in PSH where

agents pick up all the data at the target simultaneously once at the target location.

We compare the sum total of data at targets and the base for T=200. Longer time

is used for these comparison to get close to an infinite time results. These sequences

are shown in Figure 4·12, 4·13 and 4·14. Each color represents one agent’s trajectory.

130

We can see from these comparisons that in the graph-based approach targets are

completely divided between agents. This generates a spatial partitioning, giving each

agent full responsibility of a set of targets. However, in the trajectory planning results,

in most cases, we see more of a temporal partitioning where agents can visit same

targets but in different time of the mission. This can allow for more robustness with

respect to agent’s failure or other changes in an agent’s condition.

Table 4.5: Results Comparison with PSH for Case II

Method J∗1 J∗2

PSH Sequence 0.023 0.22

Elliptical Sequence 0.027 0.21

Fourier Sequence 0.024 0.21

Table 4.6: Results Comparison with PSH for Case III

Method J∗1 J∗2

PSH Sequence 0.0257 0.21

Elliptical Sequence 0.0304 0.199

Fourier Sequence 0.0212 0.21

131

0 5 10 15 20 25
0

5

10

X

Time

0 200 400 600 800 1000 1200
0.2

0.3

0.4

0.5

0.6

iteration

O
bj

ec
tiv

e
F

un
ct

io
n

0 5 10 15 20 25
0

2

4

Y
0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

1

2

3

2

3

Targets
Base
Convex Hull
Agent 1 Initial
Agent 2 Initial
Agent 1 Final
Agent 2 Final

Figure 4·4: TPBVP Trajectories for case I

132

0 5 10 15 20 25
0

5

10

X

Time
0 5 10 15 20 25

0

10

20

Y

0 50 100 150 200 250 300 350 400
0.25

0.3

0.35

iteration

O
bj

ec
tiv

e
F

un
ct

io
n

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

1

2

3

Convex Hull
Targets
Base
Agent 1 Initial
Agent 2 Initial
Agent 1 Final
Agent 2 Final

Figure 4·5: Elliptical Trajectories for case I

133

0 5 10 15 20 25
0

1

2

3

4

5

X

Time
0 5 10 15 20 25

0

2

4

6

8

10

Y

0 10 20 30 40 50 60 70 80
0.2

0.25

0.3

0.35

0.4

iteration

O
bj

ec
tiv

e
F

un
ct

io
n

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

1

2

3

Convex Hull
Targets
Base
Agent 1 Initial
Agent 2 Initial
Agent 1 Final
Agent 2 Final

Figure 4·6: Fourier Trajectories for case I

134

0 10 20 30 40 50 60
0

50

100

X

Time

0 500 1000 1500 2000 2500
0

0.2

0.4

iteration

O
bj

ec
tiv

e
F

un
ct

io
n 0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

 1

 2

 3

 4

 5

 6
 7

 8

 9

10

Convex Hull
Targets
Base
Agent 1 Initial
Agent 2 Initial
Agent 1 Final
Agent 2 Final

0 10 20 30 40 50 60
0

100

200

Y

Figure 4·7: Elliptical Trajectories for Case II

135

0 10 20 30 40 50 60
0

20

40

60

X

Time

0 20 40 60 80 100 120
0

0.25

0.5

iterationO
bj

ec
tiv

e
F

un
ct

io
n 0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

 1

 2

 3

 4

 5

 6
 7

 8

 9

10

Convex Hull
Targets
Base
Agent 1 Initial
Agent 2 Initial
Agent 1 Final
Agent 2 Final

0 10 20 30 40 50 60
0

50

100

150

Y

Figure 4·8: Fourier Trajectories for Case II

136

0 10 20 30 40 50 60
0

50

100

150

200

X

Time

0 100 200 300 400 500 600 700 800 900 1000

0.35

0.4

0.45

iteration

O
bj

ec
tiv

e
F

un
ct

io
n 0 1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

10

 1

 2

 3

 4

 5

 6

 7

 8

 9

10
11

12

13

Convex Hull
Targets
Base
Agent 1 Initial
Agent 2 Initial
Agent 1 Final
Agent 2 Final

0 10 20 30 40 50 60
0

50

100

150

200

Y

Figure 4·9: Elliptical Trajectories for case III

137

0 10 20 30 40 50 60
0

50

100

X

Time

0 50 100 150 200
0

0.5

1

iteration

O
bj

ec
tiv

e
F

un
ct

io
n 0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

 1

 2

 3

 4

 5

 6

 7

 8

 9

10
11

12

13

Convex Hull
Targets
Base
Agent 1 Initial
Agent 2 Initial
Agent 1 Final
Agent 2 Final

0 10 20 30 40 50 60
0

100

200

Y

Figure 4·10: Fourier Trajectories for case III

138

0 10 20 30 40 50 60
0

50

100

X

Time
0 10 20 30 40 50 60

0

100

200

Y

0 100 200 300 400 500 600 700 800
0.2

0.4

0.6

iteration

O
bj

ec
tiv

e
F

un
ct

io
n 0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

 1

 2

 3

 4

 5

 6

 7

 8

 9

10
11

12

13

Convex Hull
Targets
Base
Agent 1 Initial
Agent 2 Initial
Agent 1 Final
Agent 2 Final

Figure 4·11: Fourier Trajectories for case III with Stochastic Arrival

139

Figure 4·12: PSH Sequences for case III

140

Figure 4·13: Elliptical Sequences for case III

141

Figure 4·14: Fourier Sequences for case III

142

Chapter 5

Conclusions and Future Directions

In this work we focused on applying several event-driven control methodologies to

different classes of multi-agent systems. At first we proposed an event-driven coop-

erative receding horizon controller for the maximum reward collection problem. The

CRH controller, finds the (local)optimal heading for the agents in the problem by

defining an finite time optimization problem for a planning horizon and then the con-

trol is actuated for the duration of action horizon which is smaller than or equal to

the planning horizon.

The length of planning horizon and action horizon are determined based on the

topology and observed events of the system. The uncertainty in the environment

could be unknown location of targets, appearing and disappearing of the targets at

random times, threats and obstacles and agent’s failure. Some of these uncertainties

have been studied and the CRH controller is able to respond to them by re-solving the

optimal control problem at the time an event happens and new information become

available.

Building on the fundamental structure of the previously introduced Cooperative

Receding Horizon Controller in (Li and Cassandras, 2006b) we have tackled several

shortcomings of the original work. These shortcomings are studied and improved

with a totally new definition for the problem’s objective function.

We have introduced the idea of active target set, which describes the possible

best visits for each agent. Using the active target set definition, we have shown that

143

the feasible optimal heading for each agent at each time step of the problem lies in a

finite set of headings. This improves the speed of the algorithm and tend to result in

a lot less hedging and instability of the agents.

We also have introduced the notion of travel cost factor, which generates a new

distance metric between agents and targets. This metric allows us to determine the

reward-to-go in the objective function on a projected shortest path for the agent with

respect to the travel cost factor. This provides us with a more realistic value for

the estimated reward at the end of the mission, in contrast to the unattainable loose

upper bound that was used in the previous work.

The performance comparison of the new CRH controller with previous work,

shows significant improvement in the final collected rewards for randomly generated

cases. We also see a great improvement in eliminating the instabilities in the agent’s

trajectories.

In the second part of this work we have focused on application of event-driven

trajectory planning in a few classes of multi-agent systems. At first we introduce a

general framework of multi-agent systems moving toward classes with discrete point

of interests as targets. We model this system as a general stochastic hybrid system

while pointing at fundamental issues that exist when trying to apply event-driven

optimization methods to solve the problem. We introduce and address the issue of

event excitation in this general class of problems. A new metric is introduced that

captures the agent and target interaction in a continuous way while the point of

interests make a finite discrete set in the mission space.

The general problem is modeled as a finite time optimal control that needs a TP-

BVP numerical solver. Due to computational complexity and benefits of parametric

trajectories, we introduce a few set of parametrization for the proposed trajectories.

The parametric optimization problem is then solved using gradient base methods

144

while applying the Infinitesimal Perturbation Analysis techniques in estimating the

performance measure derivatives with respect to the trajectory parameters.

The methodology is applied to two class of problems. The first on is a data

collection model which reduces to TSP like problems in the simplest case. The second

is the data harvesting problem in which data is collected from targets and delivered

to the base. The goal is to minimize the target’s data content and maximize the

base data content. We have compared the results from our trajectory optimization

with a graph-based tour selection approach called path splitter heuristic (PSH). We

have shown that the new methodology can achieve comparable results and in some

cases does better. It can be seen that the type of cooperation in methods like PSH is

more of a spatial partitioning while the trajectories tend to achieve the cooperation

in a temporal aspect and visit targets in different time schedule rather than dividing

targets between each other. On of the benefits of this is that in case of agent’s failure

the impact that the system gets might be more tolerable. However, we normally

converge to a local optimal trajectory which depends on the initial trajectory and

this can affect the end results if the optimization is not initialized with a good choice.

Although the proposed methodology is focused on applying the event-driven op-

timization approach to the problem of data harvesting or data collection, it has to

be noted that the new metric that has been introduced allows us to generalize the

methodology to other applications as well. The new metric introduces a potential field

or density map over the whole mission space, this can be looked at as a probability

distribution of potential targets in problems where the exact location of targets are

unknown. This probability density can be used a prior info which can be improved

while the agents move around the mission space and gather more information. In a

further step this density can be dynamically changing if the targets are moving or

their location changes with time, this obviously needs some prior information of the

145

target’s moving path. This provides us with a tool to apply the trajectory optimiza-

tion in a much broader range of problems where targets are tracking points of interest.

Also for instanced of the general persistent monitoring or coverage problems, where

there are only finite points that are of interest, the new metric can provide a tool to

apply event-driven optimization methods as well.

5.1 Future Directions

5.1.1 Extensions for CRH controller:

The receding horizon controller can be applied to other multi-agent systems and

specially as the very first step it can be applied to the data harvesting problem which

we have addressed from a different angel. The collection delay might be modeled as a

negative reward while the delivery delay is modeled as a dynamic reward at the base.

The CRH controller can also incorporate environment’s constraints and obstacles.

We may model the problem in graph topology and in special case the grid topology,

with non-Euclidean distance metrics incorporating the same ideas of active target set

and travel cost factor.

We also showed that the final result of the CRH controller is very sensitive to

the quality of the reward-to-go estimation. We improved this estimation compared

to the upper bound in the previous work. However, it might still be further improved

using heuristic methods and over the shelf minimum tour estimation techniques to

find faster and better estimations.

5.1.2 Extensions for Trajectory Optimization:

The trajectory optimization methodology can also be applied to problems like track-

ing and surveillance where even the targets locations are not fully known. The den-

sity function that creates the potential field can easily be replaced by a probability

146

distribution which carries information about possible target locations. An on-line

application of such controller can be used to “learn” the actual location of the targets

through iterative realization of the system.

The mission space can also be extended to more interesting setting, such as no-

pass zones and obstacles. Accounting for obstacles might be handled by introducing

targets with negative reward. These can model an obstacle in terms of an area that

an agent has no interest in and is repelled from visiting.

5.1.3 Agent’s Model Extensions:

In both methods we can extend the models to handle agent’s mobility limitation.

The first direction might be to consider non-holonomic motion constraints in which

the agent is described as a double integrator with limited angular velocity. We can

also consider agents that have a limited capacity to carry rewards or data. This is a

realistic model for problems such as disaster planning or evacuations along with gen-

eral sensor networks where the buffer size is limited. The other direction to consider

is teams of non-uniform agents which have different dynamics and capabilities. This

can allow us to analyse fleets of agents in transportation or smart city problems.

5.1.4 Extension to Decentralized Control Methods

Both methods can be extended to decentralized controllers by considering the right

communication protocols between agents. The CRH controller has been extended to

a distributed version in its original format and the new methodology can easily allow

for each agent to calculate its own optimal heading if it knows the targets location

within its own partition. The amount of data and the type of communication have to

be discussed precisely for each specific problem. In the case of trajectory optimization,

also extending the methodology to a distributed scheme with limited information is

possible.

Appendices

147

148

Appendix A

Mathematical Proofs

A.1 Chapter 2

A.1.1 Proof of Lemma 2.1

Proof. Before proving the lemma we prove ∀x ∈ Fj(tk, Hk)

ηl(Cl,j(tk, Hk), tk +Hk) ≤ ηl(x, tk +Hk) (A·1)

From the definition of ηi(x, t) in (2·18) and Cl,j(tk, Hk) in (2·22) we have:

d(Cl,j(tk, Hk),yl) ≤ d(x,yl), ∀x ∈ Fj(tk, Hk) (A·2)

dividing both sides of (A·2) by λld
−1
l and adding ζl(tk + Hk) we get the results in

(A·1). Now we prove the actual lemma 2.1 starting from the forward statement:
′′ =⇒′′: To prove the forward statement, we prove the if target l is an active target

then (2·23) is true. We use contradiction assuming there exist a target r such that

ηl(Cl,j(tk, Hk), tk +Hk) > ηr(Cl,j(tk, Hk), tk +Hk) (A·3)

Using (A·1) we get ∀x ∈ Fj(tk, Hk)

ηr(Cl,j(tk, Hk), tk +Hk) < ηl(x, tk +Hk) (A·4)

This means 6∃ x ∈ Fj(tk, Hk) s.t. l = argmini ηi(x, tk + Hk). Therefore target l can

not be an active target which contradicts the assumption, hence (2·23) is true.
′′ ⇐=′′: To prove the reverse statement, assuming ∀i ∈ Tk,

ηl(Cl,j(tk, Hk), tk +Hk) < ηi(Cl,j(tk, Hk), tk +Hk) (A·5)

149

By the definition of active targets, we know that target l is an active target of agent

j at time tk.

A.1.2 Proof of Lemma 2.2

Proof. Active target set creates a partition on the set Fj(tk, Hk) where each partition

is an arc in a Euclidean mission space. For an active target l ∈ Sj(tk, Hk) we call

this partition F lj(tk, Hk) ⊂ Fj(tk, Hk). For each partition F lj(tk, Hk) we prove that

the heading v∗ = v(Cl,1(tk, Hk)) satisfies, ∀x ∈ F lj(tk, Hk)

JI(v
∗, tk, Hk) + JA(v∗, tk, Hk) > JI(v(x), tk, Hk) + JA(v(x), tk, Hk) (A·6)

We consider two different cases:

1: yl ∈ F1(tk, Hk), This means d(yl,x1(t)) = Hk. Also following the definition

Cl,1(tk, Hk) = yl in (2·22). This guarantees that ∀r ∈ Tk:

qr(Cr,1(tk +Hk)) =

 1 if r = l

0 ,o.w.

(A·7)

so assuming τ̃r(v
∗, tk, Hk)) = τ̃ ∗r we have

J(v∗, tk, Hk) =JI(v
∗, tk, Hk) + JA(v∗, tk, Hk)

=λlφl(tk +Hk) +

Mk+1∑
r=1

λrφr(τ̃
∗
r)ql(x1(τ̃ ∗r))

Here Mk+1 = |Tk+1| and Tk+1 = Tk − {l} since target l will be already collected at

time tk + Hk. τ̃
∗
r will be determined based on a tour θ that starts at point yl. Now

let’s calculate the objective function for any other heading v(x) where x ∈ F l1(tk, Hk).

Let’s call τ̃r(v(x), tk, Hk)) = τ̃r

J(v(x), tk, Hk) =JI(v(x), tk, Hk) + JA(v(x), tk, Hk)

=

Mk∑
r=1

λrφr(tk +Hk)qr(x(tk +Hk)) + JA(v(x), tk, Hk)

=0 +

M ′k+1∑
r=1

λrφr(τ̃r)ql(x1(τ̃r))

150

Because x 6= Cl,1(tk, Hk) so qr(x) = 0 for all r ∈ Tk, therefore the immediate reward

is equal to 0. The aggregated tour is determined over the set T ′k+1 = Tk and it starts

at point x ∈ F l1(tk, Hk). By the definition the target with the least travel cost from

point x is the active target l and this will be the first target in the tour. The rest of

the tour consists of targets in Tk+1 − l starting at yl. Let’s call this tour θ′. Since in

both tours θ and θ′ the starting point and the set of available targets are the same,

the order of the targets will be identical and we have θ′ = [l θ]. The collection times

in the θ can be calculated as:

τ̃ ∗θ(n),1 = tk +Hk +
n−1∑
i=1

d(yθ(i),yθ(i+1)) (A·8)

In the second tour the collection time for target θ′(1) = l is: τ̃θ′(1),1 = tk+Hk+d(x,yl).

For the rest of the targets with 1 < n ≤M ′
k+1

τ̃θ′(n),1 = tk +Hk + d(x,yl) +
n−1∑
i=1

d(yθ′(i),yθ′(i+1)) (A·9)

∀1 < n ≤ Mk+1 we have θ′(n + 1) = θ(n), now we can say: τ̃θ′(n+1),1 > τ̃θ(n),1.

We assumed that for all i ∈ T , φi(t) is a non-increasing discount function, therefore

φθ′(n+1)(τ̃θ′(n+1),1) ≤ φθ(n)(τ̃θ(n),1), so we have

λlφl(tk+Hk+d(x,yl))+

M ′k+1∑
n=2

λθ′(n)φθ′(n)(τ̃θ′(n),1) ≤ λlφl(tk+Hk)+

Mk+1∑
n=1

λθ(n)φθ(n)(τ̃θ(n),1)

(A·10)

The right side is J(v∗, tk, Hk) and the left side is J(v(x), tk, Hk), so we have proved

that ∀x ∈ F l1(tk, Hk) where x 6= Cl,1(tk, Hk) we have J(v(x), tk, Hk) ≤ J(v∗, tk, Hk).

2: yl 6∈ F1(tk, Hk), In this case for any point x ∈ F lj(tk, Hk) we have a zero

immediate reward. Thus the aggregated reward is to be compared. Using (2·20), for

any x ∈ F lj(tk, Hk) we know the aggregation tour θ for any point x starts with target

l and the rest of it would also be the same. Now similarly let’s assume θ shows the

tour for v∗ and θ′ shows the tour for any other point x. The collection times for θ

are:

τ̃ ∗θ(n),1 = tk +Hk + d(yl, Cl,1(tk, Hk)) +
n−1∑
i=1

d(yθ(i),yθ(i+1)) (A·11)

151

and for θ′:

τ̃ ∗θ(n),1 = tk +Hk + d(yl,x) +
n−1∑
i=1

d(yθ(i),yθ(i+1)) (A·12)

Now by the definition in (2·22), Cl,1(tk, Hk)) is on the shortest path from xj(tk) to

yl meaning τ̃θ′(n),1 > τ̃θ(n),1. Again with the reward discount function being non-

increasing we have φθ′(n)(τ̃θ′(n),1) ≤ φθ(n)(τ̃θ(n),1). Which means J(v(x), tk, Hk) ≤
J(v∗, tk, Hk). We proved that for all the active targets the best heading among the

headings associated with that target is the direct heading towards that. This means

the optimal heading would be one of the direct headings toward an active target.

A.1.3 Proof of Theorem 2.1

Proof. In the multiple agent mission, calculating the reward-to-go in (2·29) for each

agent is exactly like a one agent mission only on its own partition Tk,j. Therefore the

results follows simply from lemma 2.2.

A.1.4 Proof of Theorem 2.2

Proof. We assume WLOG d(x,y1) < d(x,y2). Now let’s assume we are at time step

tk so we have that Hk = d(x,y1). As shown in fig. 2·12 target 1 will be on agent

1’s feasible location for next time step. This implies that target 1 is always an active

target (The travel cost of target 1 at time tk + Hk is equal to 0). Point C2,1(tk, Hk)

defined in equation (2·22) is shown in fig. 2·12. We will refer to this point as C2,1.

We have d(x,y1) = d(x, C2,1) = Hk. This results in:

d(x,y2) = d(x,y1) + d(y2, C2,1) (A·13)

From lemma 2.1 we know that target 2 is an active target if and only if

η2(C2,1, tk +Hk) ≤ η1(C2,1, tk +Hk) (A·14)

From (2·18), target 2 is an active target if and only if:

d(C2,1,y2)

λ2d
−1
2

≤ d(C2,1,y1)

λ1d
−1
1

(A·15)

152

Simplifying this we have:

λ1

d1

d(C2,1,y2) ≤ λ2

d2

d(C2,1,y1) (A·16)

Now let’s assume target 2 is not an active target, meaning:

λ1

d1

d(C2,1,y2) >
λ2

d2

d(C2,1,y1) (A·17)

Let’s start with a trivial inequality:

0 >
−λ1

d1

[d(C2,1,y2) + d(C2,1,y1)] (A·18)

Add λ2

d2
[d(C2,1,y1)] to both sides of the inequality:

λ2

d2

[d(C2,1,y1)] >
−λ1

d1

[d(C2,1,y2)] + (
λ2

d2

− λ1

d1

)d(C2,1,y1)] (A·19)

Following (A·17) we replace the left hand side with a greater value:

λ1

d1

[d(C2,1,y2)] >
−λ1

d1

[d(C2,1,y2)] + (
λ2

d2

− λ1

d1

)d(C2,1,y1)] (A·20)

Add the positive quantity of λ2

d2
[d(C2,1,y2)] to both sides:

(
λ1

d1

+
λ2

d2

)[d(C2,1,y2)] > (
λ2

d2

− λ1

d1

)[d(C2,1,y2)] + (
λ2

d2

− λ1

d1

)[d(C2,1,y1)]

= (
λ2

d2

− λ1

d1

)[d(C2,1,y1) + d(C2,1,y2)]

> (
λ2

d2

− λ1

d1

)d(y1,y2) (Triangle Inequality)

(A·21)

Rearranging the last inequality and using (A·13), we can get:

λ1

d1

[d(x,y2) + d(y2,y1)] +
λ2

d2

d(x,y2)

>
λ1

d1

d(x,y1) +
λ2

d2

[d(x,y1) + d(y2,y1)]

(A·22)

Result in (A·22) is the same as in (2·42) for path x1(t) → y1 → y2 to be optimal.

Since target 1 is the only active target at time tk, the CRH controller decision at

153

tk would be to go toward that target. Hence the controller finds the optimal path

correctly. Now let’s assume both targets are active targets. Let u1 and u2 be the

headings that go toward target 1 and 2 respectively. This means x1(tk +Hk, u1) = y1

and x1(tk + Hk, u2) = C2,1, Let’s write the objective function of the CRH controller

for both of these headings.

J(u1, tk, Hk) = JI(u1, tk, Hk) + JA(u1, tk, Hk)

= λ1φ1(tk +Hk) + λ2φ2(tk +Hk + d(y1,y2))
(A·23)

J(u2, tk, Hk) = JI(u2, tk, Hk) + JA(u2, tk, Hk)

= 0 + [λ2φ2(tk +Hk + d(C2,1,y2)) + λ1φ1(tk +Hk + d(C2,1,y2) + d(y1,y2))

(A·24)

Note that in order to calculate the objective function for u2 we find a tour starting

at point C2,1 which goes to the target with minimum collections cost. However, for

target 2 to be active at tk it has to have the smallest travel cost at that point. This

results in the JA(u2, tk, Hk) to be the reward of going to target 2 and then target 1.

We can see that using the reward of each path from (2·37) and (2·38) we can write:

J(u1, tk, Hk) = R1→2 , J(u2, tk, Hk) = R2→1 (A·25)

This simply means the objective function of the CRH controller is equal to the exact

reward of the two possible paths. Hence the CRH controller will pick the correct

optimal heading at tk.

A.2 Chapter 4

A.2.1 Elliptical Trajectories

In order to calculate the IPA derivatives we need to have the derivative of agent’s

state variable with respect to all the parameter vector Θj = [Aj, Bj, aj, bj, φj] for all

agents j. These derivatives do not depend on the events happening in the system

since the trajectories of agents are fixed at each iteration. For now we assume Ej = 1

154

for all j = 1, . . . , N hence, we drop the superscript. We have:

∂sxj
∂Aj

= 1,
∂sxj
∂Bj

= 0 (A·26)

∂sxj
∂aj

= cos ρj(t) cosφj,
∂sxj
∂bj

= − sin ρj(t) sinφj (A·27)

∂sxj
∂φj

= −aj cos ρj(t) sinφj − bj sin ρj(t) cosφj (A·28)

∂syj
∂Aj

= 0,
∂syj
∂Bj

= 1 (A·29)

∂syj
∂aj

= cos ρj(t) sinφj,
∂syj
∂bj

= sin ρj(t) cosφj (A·30)

∂syj
∂φj

= aj cos ρj(t) cosφj − bj sin ρj(t) sinφj (A·31)

Also the time derivative of the position state variables are calculated as below:

ṡxj (t) = −aj ρ̇j(t) sin ρj(t) cosφj + bj ρ̇j(t) cos ρj(t) sinφj (A·32)

ṡyj (t) = −aj ρ̇j(t) sin ρj(t) sinφj + bj ρ̇j(t) cos ρj(t) cosφj (A·33)

The gradient of the last term in the Je in (4·76) needs to be calculated separately.

We have for j 6= l,
∂Cj
∂Θl

= 0 and for j = l:

∂Cj
∂Aj

= 2Cj(− cos2 φj
∂f 1

j

∂Aj
− sin2 φj

∂f 2
j

∂Aj
− sin 2φj

∂f 3
j

∂Aj
) (A·34)

∂Cj
∂Bj

= 2Cj(− cos2 φj
∂f 1

j

∂Bj

− sin2 φj
∂f 2

j

∂Bj

− sin 2φj
∂f 3

j

∂Bj

) (A·35)

∂Cj
∂aj

= 2Cj(− cos2 φj
∂f 1

j

∂aj
− sin2 φj

∂f 2
j

∂aj
− sin 2φj

∂f 3
j

∂aj
) (A·36)

∂Cj
∂bj

= 2Cj(− cos2 φj
∂f 1

j

∂bj
− sin2 φj

∂f 2
j

∂bj
− sin 2φj

∂f 3
j

∂bj
) (A·37)

155

∂Cj
∂φj

= 2Cj((f 1
j − f 2

j) sin 2φj − 2f 3
j cos 2φj) (A·38)

where

∂f 1
j

∂Aj
= −2

(wx
B
− Aj
a2
j

)
,

∂f 1
j

∂Bj

= −2
(wy

B
−Bj

b2
j

)
∂f 1

j

∂aj
= −2

((wx
B
− Aj)2

a3
j

)
,

∂f 1
j

∂bj
= −2

((wy
B
−Bj)

2

b3
j

) (A·39)

∂f 2
j

∂Aj
= −2

(wx
B
− Aj
b2
j

)
,
∂f 2

j

∂Bj

= −2
(wy

B
−Bj

a2
j

)
∂f 2

j

∂aj
= −2

((wy
B
−Bj)

2

a3
j

)
,
∂f 2

j

∂bj
= −2

((wx
B
− Aj)2

b3
j

) (A·40)

∂f 3
j

∂Aj
= −

((b2
j − a2

j)(w
y
B
−Bj)

a2
jb

2
j

)
∂f 3

j

∂Bj

= −
((b2

j − a2
j)(w

x
B
− Aj)

a2
jb

2
j

) (A·41)

∂f 3
j

∂aj
= −2

((wx
B
− Aj)(wyB −Bj)

a3
j

)
∂f 3

j

∂bj
= 2
((wx

B
− Aj)(wyB −Bj)

b3
j

) (A·42)

A.2.2 Fourier Series Trajectories

In the fourier parametric trajectories the agent’s state derivative is calculated as the

following. The parameter vector is

Θj = [fxj , a0,j, . . . , aΓxj
, b0,j, . . . , bΓyj

, φ1,j, . . . , φΓxj
, ξ1,j, . . . , ξΓyj

]

So we have:
∂sxj
∂a0,j

= 1,
∂sxj
∂b0,j

= 0 (A·43)

∂sxj
∂an,j

= sin(2πnfxj ρj(t) + φxn,j),
∂sxj
∂bn,j

= 0 (A·44)

156

∂sxj
∂φxn,j

= an,j cos(2πnfxj ρj(t) + φxn,j)
∂sxj
∂φyn,j

= 0 (A·45)

∂sxj
∂fxj

= 2πρj(t)

Γxj∑
n=1

an,jn cos(2πnfxj ρj(t) + φxn,j), (A·46)

∂syj
∂b0,j

= 1,
∂syj
∂a0,j

= 0 (A·47)

∂syj
∂bn,j

= sin(2πnf yj ρj(t) + φyn,j),
∂syj
∂an,j

= 0 (A·48)

∂syj
∂φyn,j

= bn,j cos(2πnf yj ρj(t) + φyn,j)
∂syj
∂φxn,j

= 0 (A·49)

∂syj
∂fxj

= 0 (A·50)

Also the time derivative of the position state variables are calculated as below:

ṡxj (t) = ρ̇j(t)

Γxj∑
n=1

2πnfxj an,j cos(2πnfxj ρj(t) + φxn,j), (A·51)

ṡyj (t) = ρ̇j(t)

Γyj∑
n=1

2πnf yj bn,j cos(2πnf yj ρj(t) + φyn,j), (A·52)

A.2.3 Objective Function Gradient

From (4·39) we have:

∇L(Θ, T ; X(Θ; 0))) =
1

T

[K∑
k=0

∫ τk+1

τk

(
q∇L1(Θ, t)

− (1− q)∇L2(Θ, t) +∇L3(Θ, t) +∇L4(Θ, t)
)
dt
]

+∇Lf (Θ, T)

(A·53)

157

We calculate each term separately:

∇L1(Θ, t) =
1

MX

M∑
i=1

qiX
′
i(t) (A·54)

∇L2(Θ, t) =
1

MY

M∑
i=1

qiY
′
i (t) (A·55)

∇L3(Θ, t) =
1

MIIj(t)

(
d+
Bj

′
(t)

M∏
i=1

d+
ij(t) + d+

Bj
(t)

M∑
l=1

d+
lj
′
(t)

M∏
i=1,i 6=l

d+
ij(t)

)
(A·56)

∇L4(Θ, t) =
1

MP

N∑
j=1

[∫
S

(
R(w, t) +R

Bj
(w, t)

)
P ′j(w, t)dw

+

∫
S

(
R′(w, t) +R′

Bj
(w, t)

)
Pj(w, t)dw

]
=

1

MP

N∑
j=1

[∫
S

(
R(w, t) +R

Bj
(w, t)

)
2〈sj(t)− w, s′j(t)〉dw

+

∫
S

(M∑
i=1

qiX
′
i(t)

d+
i (w)

+

∑M
i=1 qiZ

′
ij(t)

d+
B

(w)

)
Pj(w, t)dw

]
(A·57)

∇Lf (Θ, T) =
1

MZT

M∑
i=1

qiZ
′
ij(T) (A·58)

References

Akkaya, K. and Younis, M. (2005). A survey on routing protocols for wireless sensor
networks. Ad hoc networks, 3(3):325–349.

Alamdari, S., Fata, E., and Smith, S. L. (2014). Persistent monitoring in discrete
environments: Minimizing the maximum weighted latency between observations.
The International Journal of Robotics Research, 33(1):138–154.

Anta, A. and Tabuada, P. (2010). To sample or not to sample: Self-triggered control
for nonlinear systems. IEEE Transactions on Automatic Control, 55(9):2030–2042.

Applegate, D. L., Bixby, R. E., Chvatal, V., and Cook, W. J. (2011). The traveling
salesman problem: a computational study. Princeton University Press.

Arora, S. (1998). Polynomial time approximation schemes for euclidean traveling
salesman and other geometric problems. Journal of the Association for Computing
Machinery (JACM), 45(5):753–782.

Astrom, K. and Bernhardsson, B. (2002). Comparison of riemann and lebesgue sam-
pling for first order stochastic systems. In Proceedings of the 41st IEEE Conference
on Decision and Control, 2:2011–2016.

Bansal, N., Blum, A., Chawla, S., and Meyerson, A. (2004). Approximation algo-
rithms for deadline-tsp and vehicle routing with time-windows. In Proceedings of
the 36th Annual ACM Symposium on Theory of Computing, pages 166–174.

Bayindir, L. (2016). A review of swarm robotics tasks. Neurocomputing, 172:292 –
321.

Bellingham, J. S., Tillerson, M., Alighanbari, M., and How, J. P. (2002). Cooperative
path planning for multiple UAVs in dynamic and uncertain environments. In
Proceedings of IEEE Conference on Decision and Control, pages 2816–2822.

Blackmore, L., Ono, M., and Williams, B. (2011). Chance-constrained optimal path
planning with obstacles. IEEE Transactions on Robotics, 27(6):1080–1094.

Blum, A., Chalasani, P., Coppersmith, D., Pulleyblank, B., Raghavan, P., and Sudan,
M. (1994). The minimum latency problem. In Proceedings of the 26th annual ACM
Symposium on Theory of Computing, pages 163–171.

158

159

Bryson, A. E. and Ho, Y. C. (1975). Applied optimal control: optimization, estima-
tion and control. CRC Press.

Bullo, F., Frazzoli, E., Pavone, M., Savla, K., and Smith, S. (2011). Dynamic vehicle
routing for robotic systems. Proceedings of the IEEE, 99(9):1482–1504.

Burgard, W., Moors, M., and Schneider, F. (2002). Collaborative Exploration of
Unknown Environments with Teams of Mobile Robots, volume 2466 of Lecture Notes
in Computer Science, book section 4, pages 52–70. Springer Berlin Heidelberg.

Cao, M., Morse, A., Yu, C., Anderson, B., and Dasgupta, S. (2011). Maintaining a
directed, triangular formation of mobile autonomous agents. Communications in
Information and Systems, 11(1):1–16.

Cardei, M., Thai, M. T., Li, Y., and Wu, W. (2005). Energy-efficient target coverage
in wireless sensor networks. In Proceedings of the 24th Annual IEEE International
Conference on Computer and Communications, pages 1976–1984.

Cassandras, C. G. (2014). The event-driven paradigm for control, communication
and optimization. Journal of Control and Decision, 1(1):3–17.

Cassandras, C. G. and Lafortune, S. (2006). Introduction to Discrete Event Systems.
Springer-Verlag New York, Inc., Secaucus, NJ, USA.

Cassandras, C. G. and Li, W. (2002). A receding horizon approach for solving some
cooperative control problems. In Proceedings of 49th IEEE Conference on Decision
and Control, 4:3760–3765.

Cassandras, C. G. and Li, W. (2005). Sensor networks and cooperative control.
European Journal of Control, 11(4-5):436–463.

Cassandras, C. G., Lin, X., and Ding, X. (2013). An optimal control approach to
the multi-agent persistent monitoring problem. IEEE Transactions on Automatic
Control, 58(4):947–961.

Cassandras, C. G., Wardi, Y., Panayiotou, C. G., and Yao, C. (2010). Perturba-
tion analysis and optimization of stochastic hybrid systems. European Journal of
Control, 16(6):642 – 661.

Chakrabarty, K., Iyengar, S. S., Qi, H., and Cho, E. (2002). Grid coverage for
surveillance and target location in distributed sensor networks. IEEE Transactions
on Computers, 51(12):1448–1453.

Chandler, P. R., Pachter, M., and Rasmussen, S. (2001). UAV cooperative control.
In Proceedings of the 2001 American Control Conference, 1:50–55.

160

Chang, C., Yu, G., Wang, T., and Lin, C. (2014). Path construction and visit
scheduling for targets using data mules. IEEE Transactions on Systems, Man,
and Cybernetics: Systems, 44(10):1289–1300.

Chao, I. M., Golden, B. L., and Wasil, E. A. (1996a). A fast and effective heuristic for
the orienteering problem. European Journal of Operational Research, 88(3):475–
489.

Chao, I.-M., Golden, B. L., and Wasil, E. A. (1996b). Theory and methodology - the
team orienteering problem. European Journal of Operational Research, 88:464–474.

Chen, J., Sun, D., Yang, J., and Chen, H. Y. (2010). Leader-follower formation
control of multiple non-holonomic mobile robots incorporating a receding-horizon
scheme. International Journal of Robotics Research, 29(6):727–747.

Chini, G., Poli, C., Oddi, G., and Pietrabissa, A. (2014). Receding horizon multi-
vehicle routing for emergency scenarios. In Proceedings of Mediterranean Confer-
ence on Control and Automation, pages 374–379.

Christofides, N. (1976). Worst-case analysis of a new heuristic for the travelling
salesman problem. Technical report, DTIC Document.

Corke, P., Wark, T., Jurdak, R., Hu, W., Valencia, P., and Moore, D. (2010). Envi-
ronmental wireless sensor networks. In Proceedings of the IEEE, 98:1903–1917.

Cortes, J., Martinez, S., Karatas, T., and Bullo, F. (2004). Coverage control for mo-
bile sensing networks. IEEE Transactions on Robotics and Automation, 20(2):243–
255.

Cruz, D., McClintock, J., Perteet, B., Orqueda, O. A. A., Yuan, C., and Fierro, R.
(2007). Decentralized cooperative control - a multivehicle platform for research in
networked embedded systems. IEEE Control Systems,, 27(3):58–78.

Dantzig, G. B. and Ramser, J. H. (1959). The truck dispatching problem. Manage-
ment Science, 6(1):80–91.

Defoort, M., Kokosy, A., Floquet, T., Perruquetti, W., and Palos, J. (2009). Motion
planning for cooperative unicycle-type mobile robots with limited sensing ranges:
A distributed receding horizon approach. Robotics and Autonomous Systems,
57(11):1094–1106.

Deittert, M., Richards, A., and Mathews, G. (2010). Receding horizon control in
unknown environments: Experimental results. In Proceedings of 2010 IEEE Inter-
national Conference on Robotics and Automation, pages 3008–3013.

161

Demir, O. and Lunze, J. (2012). Cooperative control of multi-agent systems with
event-based communication. In Proceedings of 2012 American Control Conference,
pages 4504–4509.

Desai, J., Kumar, V., and Ostrowski, J. (1999). Control of changes in formation for
a team of mobile robots. In Proceedings of the IEEE International Conference on
Robotics and Automation, 2:1556–1561.

Dimarogonas, D. V. and Johansson, K. H. (2009). Event-triggered cooperative con-
trol. European Control Conference, pages 3015–3020.

Dunbar, W. B. and Murray, R. M. (2006). Distributed receding horizon control for
multi-vehicle formation stabilization. Automatica, 42(4):549 – 558.

Earl, M. G. and D’Andrea, R. (2007). A decomposition approach to multi-vehicle
cooperative control. Robotics and Autonomous Systems, 55:276–291.

Ekici, A. and Retharekar, A. (2013). Multiple agents maximum collection problem
with time dependent rewards. Computers and Industrial Engineering, 64(4):1009
– 1018.

Fax, J. and Murray, R. (2004). Information flow and cooperative control of vehicle
formations. IEEE Transactions on Automatic Control, 49(9):1465–1476.

Finke, J., Passino, K. M., and Sparks, A. (2003). Cooperative control via task load
balancing for networked uninhabited autonomous vehicles. In Proceedings of 42nd
IEEE Conference on Decision and Control, pages 31–36.

Fowler, J. M. and D’Andrea, R. (2002). Distributed control of close formation flight.
In Proceedings of the 41st IEEE Conference on Decision and Control, pages 2972–
2977.

Frazzoli, E., Mao, Z. H., Oh, J. H., and Feron, E. (2001). Resolution of conflicts
involving many aircraft via semidefinite programming. Journal of Guidance, Con-
trol, and Dynamics, 24(1):79–86.

Furukawa, T., Bourgault, F., Lavis, B., and Durrant-Whyte, H. F. (2006). Recursive
bayesian search-and-tracking using coordinated uavs for lost targets. In Proceed-
ings of 2006 IEEE International Conference on Robotics and Automation, pages
2521–2526.

Harmati, I. and Skrzypczyk, K. (2009). Robot team coordination for target tracking
using fuzzy logic controller in game theoretic framework. Robotics and Autonomous
Systems, 57(1):75–86.

Hart, J. K. and Martinez, K. (2006). Environmental sensor networks: A revolution
in the earth system science. Earth-Science Reviews, 78(34):177–191.

162

Heemels, W., Sandee, J., and Van Den Bosch, P. (2008). Analysis of event-driven
controllers for linear systems. International Journal of Control, 81(4):571–590.

Hernandez-Perez, H. and Salazar-Gonzalez, J. J. (2014). The multi-commodity
pickup-and-delivery traveling salesman problem. Networks, 63(1):46–59.

Izadi, H. A., Gordon, B. W., and Rabbath, C. A. (2012). Decentralized receding hori-
zon control with communication bandwidth allocation for multiple vehicle systems.
Optimal Control Applications and Methods, 33(1):1–22.

Jadbabaie, A., Lin, J., and Morse, A. S. (2003). Coordination of groups of mobile
autonomous agents using nearest neighbor rules. IEEE Transactions on Automatic
Control, 48(6):988–1001.

Ji, M. and Egerstedt, M. (2007). Distributed coordination control of multiagent sys-
tems while preserving connectedness. IEEE Transactions on Robotics, 23(4):693–
703.

Khazaeni, Y. and Cassandras, C. G. (2014). A new event-driven cooperative receding
horizon controller for multi-agent systems in uncertain environments. In Proceed-
ings of IEEE 53rd Annual Conference on Decision and Control, pages 2770–2775.

Khazaeni, Y. and Cassandras, C. G. (2015). An optimal control approach for the
data harvesting problem. In Proceedings of IEEE 54th Annual Conference on
Decision and Control, pages 5136–5141.

Klesh, A. T., Kabamba, P. T., and Girard, A. R. (2008). Path planning for cooper-
ative time-optimal information collection. In Proceedings of the American Control
Conference, pages 1991–1996.

Kushner, H. and Yin, G. (2003). Stochastic Approximation and Recursive Algorithms
and Applications. Springer.

Lahyani, R., Khemakhem, M., and Semet, F. (2015). Rich vehicle routing problems:
From a taxonomy to a definition. European Journal of Operational Research,
241(1):1–14.

Laporte, G. (1992). The vehicle routing problem: An overview of exact and approx-
imate algorithms. European Journal of Operational Research, 59(3):345 – 358.

Li, W. and Cassandras, C. G. (2003). Stability properties of a cooperative reced-
ing horizon controller. In Proceedings of 42nd IEEE Conference Proceedings on
Decision and Control, 1:492–497.

Li, W. and Cassandras, C. G. (2006a). Centralized and distributed cooperative reced-
ing horizon control of autonomous vehicle missions. Mathematical and computer
modelling, 43(9):1208–1228.

163

Li, W. and Cassandras, C. G. (2006b). A cooperative receding horizon controller for
multivehicle uncertain environments. IEEE Transactions on Automatic Control,
51(2).

Lin, S. and Kernighan, B. W. (1973). An effective heuristic algorithm for the
traveling-salesman problem. Operations Research, 21(2):498–516.

Lin, X. and Cassandras, C. G. (2015). An optimal control approach to the multi-agent
persistent monitoring problem in two-dimensional spaces. IEEE Transactions on
Automatic Control, 60(6):1659–1664.

Liu, M., Yang, Y., and Qin, Z. (2011). A survey of routing protocols and simulations
in delay-tolerant networks. Lecture Notes in Computer Science, 6843:243–253.

Mayne, D. and Michalska, L. (1990). Receding horizon control of nonlinear systems.
IEEE Transactions Automatic Control, 35(7):814–824.

Mayne, D. Q., Rawlings, J. B., Rao, C. V., and Scokaert, P. O. M. (2000). Con-
strained model predictive control: Stability and optimality. Automatica, 36(6):789–
814.

McLain, T., Chandler, P., Rasmussen, S., , and Pachter, M. (2001). Cooperative
control of UAV rendezvous. In Proceedings of American Control Conference, pages
2309–2314.

Miskowicz, M. (2015). Event-Based Control and Signal Processing. CRC Press.

Moazzez-Estanjini, R. and Paschalidis, I. C. (2012). On delay-minimized data har-
vesting with mobile elements in wireless sensor networks. Ad Hoc Networks,
10:1191–1203.

Murphey, R. and Pardalos, P. M. (2002). Cooperative control and optimization,
volume 66. Springer.

Murray, R. M. (2007). Recent research in cooperative control of multivehicle systems.
Journal of Dynamic Systems, Measurement, and Control, 129(5):571–583.

Ny, J. L., Dahleh, M. A., Feron, E., and Frazzoli, E. (2008). Continuous path plan-
ning for a data harvesting mobile server. In Proceedings of the IEEE Conference
on Decision and Control, pages 1489–1494.

Oh, K. K. and Ahn, H. S. (2014). Formation control and network localization via
orientation alignment. IEEE Transactions on Automatic Control, 59(2):540–545.

Okabe, A., Boots, B., Sugihara, K., and Chiu, S. N. (1992). Spatial Tessellations:
Concepts and Applications of Voronoi. Wiley, New York, NY, USA, 2nd edition.

164

Olfati-Saber, R. (2007). Design of Behavior of Swarms: From Flocking to Data
Fusion using Microfilter Networks, pages 19–41. John Wiley and Sons, Ltd.

Panagou, D., Turpin, M., and Kumar, V. (2014). Decentralized goal assignment
and trajectory generation in multi-robot networks: A multiple lyapunov functions
approach. In Proceedings of 2014 IEEE International Conference on Robotics and
Automation, pages 6757–6762.

Pandya, A., Kansal, A., and Pottie, G. (2008). Goodput and delay in networks with
controlled mobility. In Proceedings of IEEE Aerospace Conference, pages 1–8.

Papadimitriou, C. H. and Steiglitz, K. (1998). Combinatorial optimization: algo-
rithms and complexity. Courier Dover Publications.

Parker, L. E. (1993). Designing control laws for cooperative agent teams. In Pro-
ceedings of IEEE International Conference on Robotics and Automation, pages
C582–C587.

Pillac, V., Gendreau, M., Guret, C., and Medaglia, A. L. (2013). A review of dynamic
vehicle routing problems. European Journal of Operational Research, 225(1):1–11.

Polycarpou, M. M., Yanli, Y., and Passino, K. M. (2001). A cooperative search
framework for distributed agents. In Proceedings of the 2001 IEEE International
Symposium on Intelligent Control, pages 1–6.

Pontryagin, L. S. (1987). Mathematical theory of optimal processes. CRC Press.

Raghunathan, A. U., Gopal, V., Subramanian, D., Biegler, L. T., and Samad, T.
(2003). 3D conflict resolution of multiple aircraft via dynamic optimization. In
Proceedings of the AIAA Guidance, Navigation, and Control Conf. and Exhibit.

Reinelt, G. (1991). TSPLIB: A traveling salesman problem library. ORSA Journal
on Computing, 3(4):376–384.

Ren, W. (2006). Cooperative control design strategies with local interactions. In
Proceedings of 2006 IEEE International Conference on Networking, Sensing and
Control, pages 451–456.

Ren, W. and Beard, R. (2008). Distributed consensus in multi-vehicle cooperative
control: theory and applications. Springer.

Ren, W., Beard, R. W., and Atkins, E. M. (2005a). A survey of consensus prob-
lems in multi-agent coordination. In Proceedings of the 2005 American Control
Conference, pages 1859–1864.

Ren, W., Beard, R. W., and McLain, T. W. (2005b). Coordination variables and
consensus building in multiple vehicle systems. Cooperative Control, 309:171–188.

165

Salz, N. P. (1965). A possible basis for a theory for traveling-salesman problem.
Operations Research, S 13.

Salz, N. P. (1966). A theory for traveling salesman problem. Operations Research, S
14.

Schneider, J. J., Bukur, T., and Krause, A. (2010). Traveling salesman problem with
clustering. Journal of Statistical Physics, 141(5):767–784.

Schwager, M., Rus, D., and Slotine, J.-J. (2009). Decentralized, adaptive coverage
control for networked robots. The International Journal of Robotics Research,
28(3):357–375.

Shamma, J. S. (2007). Cooperative control of distributed multi-agent systems. Wiley
Online Library.

Smith, R. N., Schwager, M., Smith, S. L., Rus, D., and Sukhatme, G. S. (2011). Per-
sistent ocean monitoring with underwater gliders: Towards accurate reconstruction
of dynamic ocean processes. In Proceedings of 2011 IEEE International Conference
on Robotics and Automation, pages 1517–1524.

Sun, X., Cassandras, C. G., and Gokbayrak, K. (2014). Escaping local optima
in a class of multi-agent distributed optimization problems: A boosting function
approach. In Proceeings of the IEEE 53rd Annual Conference on Decision and
Control, pages 3701–3706.

Tahbaz-Salehi, A. and Jadbabaie, A. (2008). A necessary and sufficient condition
for consensus over random networks. IEEE Transactions on Automatic Control,
53(3):791–795.

Tang, H., Miller-Hooks, E., and Tomastik, R. (2007). Scheduling technicians for
planned maintenance of geographically distributed equipment. Transportation
Research Part E: Logistics and Transportation Review, 43(5):591 – 609.

Tang, Z. and Özgüner, U. (2005). Motion planning for multitarget surveillance with
mobile sensor agents. IEEE Transactions on Robotics, 21:898–908.

Tanner, H. G., Jadbabaie, A., and Pappas, G. J. (2007). Flocking in fixed and
switching networks. IEEE Transactions on Automatic Control, 52(5):863–868.

Tekdas, O., Isler, V., Lim, J. H., and Terzis, A. (2009). Using mobile robots to
harvest data from sensor fields. IEEE Wireless Communications, 16(1):22–28.

Tomasson, E. (2011). A receding horizon approach to resource allocation and data
harvesting. Master’s thesis, Boston University.

166

Trimpe, S. and D’Andrea, R. (2014). Event-based state estimation with variance-
based triggering. IEEE Transactions on Automatic Control, 59(12):3266–3281.

Vansteenwegen, P., Souffriau, W., and Oudheusden, D. V. (2011). The orienteering
problem: A survey. European Journal of Operational Research, 209(1):1 – 10.

Wang, J. and Xin, M. (2013). Integrated optimal formation control of multiple
unmanned aerial vehicles. IEEE Transactions on Control Systems Technology,
21(5):1731–1744.

Wei, W., Srinivasan, V., and Chua, K. C. (2008). Extending the lifetime of wireless
sensor networks through mobile relays. IEEE and Association for Computing
Machinery Transactions on Networking, 16(5):1108–1120.

Yamaguchi, H. and Arai, T. (1994). Distributed and autonomous control method
for generating shape of multiple mobile robot group. In Proceedings of the IEEE
International Conference on Intelligent Robots and Systems, 2:800–807 vol.2.

Yao, C., Ding, X. C., and Cassandras, C. (2010). Cooperative receding horizon con-
trol for multi-agent rendezvous problems in uncertain environments. In Proceedings
of 49th IEEE Conference on Decision and Control, pages 4511 –4516.

Yucelen, T. and Johnson, E. (2012). Cooperative control of uncertain multivehicle
systems. In Proceedings of the IEEE 51st Annual Conference on Decision and
Control, pages 837–842.

Zahn, C. T. and Roskies, R. Z. (1972). Fourier descriptors for plane closed curves.
IEEE Transactions on Computers, C-21(3).

Zeng-Guang, H., Long, C., and Min, T. (2009). Decentralized robust adaptive con-
trol for the multiagent system consensus problem using neural networks. IEEE
Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,, 39(3):636–
647.

Zhao, W., Ammar, M., and Zegura, E. (2005). Controlling the mobility of multiple
data transport ferries in a delay-tolerant network. In Proceedings of the 24th IEEE
International Conference on Computer and Communications, 2:1407–1418.

Zhong, M. and Cassandras, C. G. (2010). Asynchronous distributed optimization
with event-driven communication. IEEE Transactions on Automatic Control,
55(12):2735–2750.

Zhong, M. and Cassandras, C. G. (2011). Distributed coverage contorol and data
collection with mobile sensor networks. IEEE Transactions on Automatic Control,
56(10):2445–2455.

CURRICULUM VITAE

YASAMAN KHAZAENI

Current Position: Research Staff Member, Cognitive User Experience Lab
IBM Research - Cambridge, MA

EDUCATION

PhD - Systems Engineering
Boston University - Boston, MA September 2011-May 2016
GPA: 4.0
M.Sc. - Petroleum Engineering:
West Virginia University - Morgantown WV August 2007-December 2009
Concentration: Reservoir Engineering, GPA: 4.0
B.Sc.- Petroleum Engineering/Reservoir Engineering
Sharif University of Technology, Tehran, IRAN August 2003-June 2005
B.Sc.- Electrical Engineering/Control Systems
Sharif University of Technology, Tehran, IRAN August 2000-June 2005

RESEARCH EXPERIENCE

CODES Lab - Boston University September 2011-May 2016
Control Of Discrete Event Systems Lab - Boston, MA

• Research in the area of cooperative multi-agent systems focusing on methods of op-
timal control, model predictive control, hybrid systems modeling and infinitesimal
perturbation analysis..

IBM Research Collaboration with Boston University - Boston City Hall June 2012
Boston, MA

• Worked with traffic visualization group in the IBM Smarter City Challenge for city
of Boston.

PEARL Lab - WVU August 2007-April 2011
Petroleum Engineering and Analytics Research Lab, Morgantown, WV

• Worked on several application of Artificial Intelligence in Reservoir modeling and
prediction.

Brunel University October 2005-August 2007
London, UK

• Investigated the effect of Tollmien-Schlichting waves in plate boundary flow by devel-
oping a 2-D simulation model for Blasius equation.

168

WORK EXPERIENCE

Summer Intern: May 2015 - August 2015

Palo Alto Research Center (EAST), A Xerox Company

• Developed a novel inverse model for skin perfusion mapping and physiological param-
eter estimation using spectral and RGB imaging. (Pending US Patent)

Research Associate: May 2010-August 2011

West Virginia University, Morgantown, WV

• Supervised a team of graduate students working on a DOE funded project on “Mon-
itoring/Verification/ Accounting(MVA), simulation, and risk assessment of CO2 se-
questration in geologic formations”

Teaching Instructor: August 2010-August 2011

West Virginia University, Morgantown, WV

• Advanced Reservoir simulation(Graduate level), Introduction to reservoir simulation
(Graduate level)

Summer Intern: May 2008 - August 2008

Merrick Systems Co.

• Worked as a software designer and developer for a geostatistical analysis software.

AWARDS & HONORS

• Division of Systems Engineering Travel Award, Boston University. 2014, 2015

• NSF Travel Award for the IEEE Conference on Decisions and Control. 2014

• Dean’s Fellowship for PhD Students in Systems Engineering,
Boston University. 2011

• Outstanding graduate student for academic achievement and excellence
in research, West Virginia University. 2008, 2009

• Invited discussion leader for the “Artificial Intelligence in the E&P industry
Forum”, Colorado Springs, June 2009. 2009

• 2nd prize in Nico van Wingen SPE annual scholarship. 2009

• Soudavar scholarship (30,000 GBP) by Brunel University, London 2005

• Three year undergraduate scholarship in Petroleum Engineering
from Sharif University of Technology. 2003

• 4th place among over 450,000 participants in the national university
entrance exam, IRAN. 2000

169

SELECTED PUBLICATIONS

• Y. Khazaeni, C. G. Cassandras, Event excitation for event-driven control and op-
timization of multi-agent systems, 13th International Workshop on Discrete Event
Systems, May 2016, Xi’an, China.

• Y. Khazaeni, C. G. Cassandras, An Optimal Control Approach for the Data Harvest-
ing Problem, 2015 IEEE 54th Annual Conference on Decision and Control (CDC),
Japan. pp. 5136-5141, Dec. 2015, Osaka, Japan.

• Y. Khazaeni, C. G. Cassandras, Event-Driven Cooperative Receding Horizon Control
for Multi-agent Systems in Uncertain Environments, Under review in IEEE Transac-
tions on Control and Network Systems.

• Y. Khazaeni, C. G. Cassandras, A New Event-Driven Cooperative Receding Hori-
zon Controller for Multi-agent Systems in Uncertain Environments, 2014 IEEE 53rd
Annual Conference on Decision and Control (CDC), pp.2770–2775, Dec. 2014, Los
Angeles, CA.

• S.D. Mohaghegh, Y. Khazaeni, R. Gaskari, M. Maysami, Data-Driven Reservoir Man-
agement of a Giant Mature Oilfield in the Middle East, Society of Petroleum Engineers
Annual Technical Conference and Exhibition (ATCE), 27 - 29 October 2014. RAI
Centre Amsterdam, The Netherlands.

• S.D. Mohaghegh, Y. Al-Mehairi, R. Gaskari, M. Maysami, Y. Khazaeni, M. Gashut,
A. E. Al-Hammadi and S. Kumar Top-Down Modeling (TDM) of a Mature Giant
Oilfield in the Middle East; Simultaneous History Matching of Production, Static
Pressure and Time-Lapse Saturation , ADIPEC 2013 Technical Conference, Abu
Dhabi, UAE, 10-13 November 2013.

• Y. Khazaeni, S.D. Mohaghegh , Intelligent Production Modeling Using Full Field Pat-
tern Recognition, SPE Reservoir Evaluation and Engineering-Reservoir Engineering,
Volume 14, Number 6, December 2011, pp. 735-749

• Y. Khazaeni, S.D. Mohaghegh, Intelligent Time-Successive Production Modelling,
SPE Western Regional Conference, Anaheim CA, May 2010. SPE 132643.

