5 research outputs found

    Efficient enhanced routing algorithm to find Optimal path in multi-hop network

    Get PDF
    ABSTRACT: We consider a single source that imparts to a single goal helped by a few transfers through various hops. At each hop, just a single node transmits, while the various nodes get the transmitted flag, and store it subsequent to processing/decoding and blending it with the signs got in past hops. That is, we think about that terminals utilize propelled energy gathering transmission/gathering procedures, for example, maximal proportion joining gathering of redundancy codes, or data collection with rateless codes. Aggregate strategies increment correspondence dependability, diminish energy utilization, and abatement inertness. We examine the properties that a directing measurement must fulfill in these collective networks to ensure that ideal ways can be processed with Dijkstra's algorithm. We display the issue of directing in collective multi-hop networks, as the issue of steering in a hypergraph. We demonstrate that optimality properties in a conventional multi-hop organize (monotonicity and isotonicity) are never again valuable and determine another arrangement of adequate conditions for optimality

    A Survey on Cooperative Communication in Wireless Networks

    Full text link

    Multiple Symbol Double Differential Transmission for Amplify-and-Forward Cooperative Diversity Networks in Time-Varying Channel

    Get PDF
    In the cooperative diversity wireless networks, the task to perform cooperation communication amongst neighbouring nodes is very challenging. Subjected to rapidly increasing mobility of the nodes i.e. wireless devices in fast moving vehicles and trains, at the destination end the receiver may not ideally estimate the channel characteristics and frequency offsets. Due to these circumstances which results in time-varying channels, the performance network degrades drastically. In order to enhance the performance in such environment, Double Differential (DD) modulation employing multiple symbol based detection is proposed which takes mobility environment of different nodes into consideration. By utilizing the DD transmission approach, the channel properties and frequency offset estimation is omitted in the amplify-andforward cooperative networks. The MATLAB simulation and numerical analysis on Bit Error Rate (BER) are carried out with consideration on considering flat-fading (i.e. the frequency non-selective) Rayleigh channels and when frequency offsets. The results depict that the proposed method over fading channels without channel estimation requirements and in the presence of frequency offsets performs better as compared to the conventional DD transmission. Optimized power allocation is also carried out to enhance the network performance by minimizing the BER analytical expression. It is demonstrated that the proposed power allocation scheme offers enhancement over the equally distributed power allocation approach

    Low-density Parity-check Codes for Wireless Relay Networks

    Get PDF
    In wireless networks, it has always been a challenge to satisfy high traffic throughput demands, due to limited spectrum resources. In past decades, various techniques, including cooperative communications, have been developed to achieve higher communication rates. This thesis addresses the challenges imposed by cooperative wireless networks, in particular focusing on practical code constructions and designs for wireless relay networks. The thesis is divided into the following four topics: 1) constructing and designing low-density parity-check (LDPC) codes for half-duplex three-phase two-way relay channels, 2) extending LDPC code constructions to half-duplex three-way relay channels, 3) proposing maximum-rate relay selection algorithms and LDPC code constructions for the broadcast problem in wireless relay networks, and 4) proposing an iterative hard interference cancellation decoder for LDPC codes in 2-user multiple-access channels. Under the first topic, we construct codes for half-duplex three-phase two-way relay channels where two terminal nodes exchange information with the help of a relay node. Constructing codes for such channels is challenging, especially when messages are encoded into multiple streams and a destination node receives signals from multiple nodes. We first prove an achievable rate region by random coding. Next, a systematic LDPC code is constructed at the relay node where relay bits are generated from two source codewords. At the terminal nodes, messages are decoded from signals of the source node and the relay node. To analyze the performance of the codes, discretized density evolution is derived. Based on the discretized density evolution, degree distributions are optimized by iterative linear programming in three steps. The optimized codes obtained are 26% longer than the theoretic ones. For the second topic, we extend LDPC code constructions from half-duplex three-phase two-way relay channels to half-duplex three-way relay channels. An achievable rate region of half-duplex three-way relay channels is first proved. Next, LDPC codes for each sub-region of the achievable rate region are constructed, where relay bits can be generated only from a received codeword or from both the source codeword and received codewords. Under the third topic, we study relay selection and code constructions for the broadcast problem in wireless relay networks. We start with the system model, followed by a theorem stating that a node can decode a message by jointly decoding multiple blocks of received signals. Next, the maximum rate is given when a message is decoded hop-by-hop or decoded by a set of nodes in a transmission phase. Furthermore, optimal relay selection algorithms are proposed for the two relay schemes. Finally, LDPC codes are constructed for the broadcast problem in wireless relay networks. For the fourth topic, an iterative hard interference cancellation decoder for LDPC codes in 2-user multiple-access channels is proposed. The decoder is based on log-likelihood ratios (LLRs). Interference is estimated, quantized and subtracted from channel outputs. To analyze the codes, density evolution is derived. We show that the required signal-to-noise ratio (SNR) for the proposed low-complexity decoder is 0.2 dB higher than that for an existing sub-optimal belief propagation decoder at code rate 1/3.4 month
    corecore