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Abstract

In wireless networks, it has always been a challenge to satisfy high traffic throughput

demands, due to limited spectrum resources. In past decades, various techniques, including

cooperative communications, have been developed to achieve higher communication rates.

This thesis addresses the challenges imposed by cooperative wireless networks, in par-

ticular focusing on practical code constructions and designs for wireless relay networks.

The thesis is divided into the following four topics: 1) constructing and designing low-

density parity-check (LDPC) codes for half-duplex three-phase two-way relay channels, 2)

extending LDPC code constructions to half-duplex three-way relay channels, 3) proposing

maximum-rate relay selection algorithms and LDPC code constructions for the broadcast

problem in wireless relay networks, and 4) proposing an iterative hard interference cancel-

lation decoder for LDPC codes in 2-user multiple-access channels.

Under the first topic, we construct codes for half-duplex three-phase two-way relay

channels where two terminal nodes exchange information with the help of a relay node.

Constructing codes for such channels is challenging, especially when messages are encoded

into multiple streams and a destination node receives signals from multiple nodes. We

first prove an achievable rate region by random coding. Next, a systematic LDPC code is

constructed at the relay node where relay bits are generated from two source codewords.

At the terminal nodes, messages are decoded from signals of the source node and the relay

node. To analyze the performance of the codes, discretized density evolution is derived.

Based on the discretized density evolution, degree distributions are optimized by iterative

linear programming in three steps. The optimized codes obtained are 26% longer than the

theoretic ones.

For the second topic, we extend LDPC code constructions from half-duplex three-phase

two-way relay channels to half-duplex three-way relay channels. An achievable rate region

of half-duplex three-way relay channels is first proved. Next, LDPC codes for each sub-

region of the achievable rate region are constructed, where relay bits can be generated only

from a received codeword or from both the source codeword and received codewords.
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Under the third topic, we study relay selection and code constructions for the broadcast

problem in wireless relay networks. We start with the system model, followed by a theorem

stating that a node can decode a message by jointly decoding multiple blocks of received

signals. Next, the maximum rate is given when a message is decoded hop-by-hop or

decoded by a set of nodes in a transmission phase. Furthermore, optimal relay selection

algorithms are proposed for the two relay schemes. Finally, LDPC codes are constructed

for the broadcast problem in wireless relay networks.

For the fourth topic, an iterative hard interference cancellation decoder for LDPC codes

in 2-user multiple-access channels is proposed. The decoder is based on log-likelihood ratios

(LLRs). Interference is estimated, quantized and subtracted from channel outputs. To

analyze the codes, density evolution is derived. We show that the required signal-to-noise

ratio (SNR) for the proposed low-complexity decoder is 0.2 dB higher than that for an

existing sub-optimal belief propagation decoder at code rate 1
3
.
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Chapter 1

Introduction

1.1 Research motivations and objectives

Satisfying high traffic throughput demands in wireless networks is an on-going challenge.

The throughput is capped by limited spectrum resources, due to shared medium. Cooper-

ative communications and various other techniques have been developed in recent decades

to achieve higher communication rates.

When signals are broadcast from a source node to a destination node, only a small

fraction of the energy is received at the destination node directly. If received signals at

other nodes can be utilized, less energy or a higher transmission rate can be achieved.

In addition, more reliable communications can be achieved when messages are received

through multiple paths. Cooperative communications are similar to the multiple-input

and multiple-output (MIMO) system where multiple data streams are received by multiple

antennas, but the distance between transmitters or the distance between receivers is much

longer.

This thesis focuses on practical coding schemes for wireless relay networks. Coding

in such networks is challenging since messages must generally be encoded into multiple
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streams and jointly decoded from multiple blocks of signals. The thesis is divided into the

following four topics.

The first topic explores practical coding schemes for two-way relay channels. In such

channels, two source nodes exchange information with the help of a relay node. Military

and disaster response applications are among potential applications, e.g., establishing a

wireless link with the help of a relay node to enhance reliability or increase throughput.

In half-duplex two-phase two-way relay channels, signals from the two source nodes are

superimposed at the relay node. Without considering the noise, such superimposed signals

can be thought as physical-layer network coding, where channel gains are considered as co-

efficients of a linear combination of the two source codewords. Different strategies, such as

amplify-and-forward, decode-and-forward and denoise-and-forward [1], have been proposed

to process the superimposed signals. In the amplify-and-forward strategy, superimposed

signals are amplified and broadcast to the two destination nodes. Since no decoding is

performed, noises are kept and amplified. In the decode-and-forward strategy, the two

source codewords are decoded before a relay codeword is generated. However, when two

signals x1, x2 ∈ {−1,+1} are superimposed, the outcome signal is x1 + x2 ∈ {−2, 0,+2}.
Even without the noise, x1 and x2 cannot be determined when x1 + x2 = 0. Thus, the

decode-and-forward strategy is over-decoding. Based on this observation, in the denoise-

and-forward strategy, only the superimposed codeword x1 + x2 is decoded, with no need

to decode both x1 and x2.

In half-duplex two-phase two-way relay channels, due to the half-duplex constraint, the

destination node cannot utilize signals from the source node. In addition, the complexity

of processing superimposed signals is high. These two disadvantages have motivated some

recent studies on half-duplex three-phase two-way relay channels. The relay codeword

can be generated by simply adding the two source codewords in GF(2). However, this

strategy is not optimal if links between the source node and the relay node are asymmetric,

since equal amounts of information from the two codewords are included in the relay

codeword. Hence, the objective of the first topic is to construct and design practical codes

for the half-duplex three-phase two-way relay channels. This work proposes systematic
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low-density parity-check (LDPC) codes at the relay node. With this code construction,

unequal amounts of information can be included in the relay bits.

LDPC code constructions can be further extended from half-duplex two-way relay chan-

nels to half-duplex three-way relay channels. In the latter channels, each node broadcasts

its own messages to the other two nodes. Meanwhile, the node would help to relay mes-

sages when necessary. In the second topic, we are mainly interested in the following two

questions: What is the achievable rate region of half-duplex three-way relay channels? How

can one construct LDPC codes for such channels?

In the third topic, we extend the study of 3-node networks to wireless relay networks.

In particular, we consider the broadcast problem and ask the following questions when

cooperative communications are considered: What is the maximum rate for the broadcast

problem in a given wireless relay network? How can one efficiently find the optimal relay

route? How can one construct LDPC codes for the broadcast problem in wireless relay

networks?

In the fourth topic, we study decoding algorithms for LDPC codes in 2-user multiple-

access channels. These channels are in the first phase of the two-phase two-way relay

channels where signals of two source codewords are superimposed. Since the complexity

of an existing sub-optimal belief propagation joint decoder is high, we propose a simplified

iterative hard interference cancellation decoder in the fourth topic of this thesis.

1.2 Research contributions

The main objective of this thesis is to construct and design LDPC codes for wireless relay

networks. We next list the main contributions of this work.

For the first topic, we study half-duplex three-phase two-way relay channels where two

terminal nodes exchange information with the help of a relay node. Designing practical

coding schemes for such channels is challenging, especially when messages are encoded into
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multiple streams and a destination node receives signals from multiple nodes. The main

contributions under this topic are as follows.

• An achievable rate region of half-duplex three-phase two-way relay channels is proved.

• Inspired by random binning, systematic LDPC codes are proposed for the relay node.

Source codeword pairs generating the same relay codeword are in the same bin. By

this code construction, we can effectively control the amounts of information included

in the relay codeword from the two source codewords.

• A joint decoder for terminal nodes is designed, where signals received from the source

node, signals received from the relay node and the codeword of the destination node

are used.

• To analyze the performance of the codes, discretized density evolution is derived for

the decoder of the terminal nodes.

• Based on the discretized density evolution, degree distributions are optimized by

iterative linear programming in three steps.

• The length of the obtained optimized codes is 26% longer than the theoretic one.

In the second topic, we extend the study from half-duplex three-phase two-way relay

channels to half-duplex three-way relay channels. Our main contributions are as follows.

• An achievable rate region of half-duplex three-way relay channels is proved.

• LDPC codes for each sub-region of the achievable rate region are constructed.

In the third topic, we study relay selection and LDPC code constructions for the broad-

cast problem in wireless relay networks when cooperative communications are considered.

The main contributions under this topic are the following.
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• We prove a theorem stating that a node can decode a message by jointly decoding

multiple blocks of received signals even if it cannot decode the message from any

single block of received signals.

• The maximum rates are given when the message is decoded hop-by-hop or decoded

by a set of nodes in a transmission phase.

• In contrast to the complexity of (N−1)! in a full search, we propose an optimal relay

selection algorithm for the hop-by-hop relay with the complexity of O(N2).

• Two theorems that can prune the search space are proved. Based on the two theo-

rems, an optimal relay selection algorithm is proposed for the level-by-level relay.

• LDPC codes for the broadcast problem in wireless relay networks are constructed.

In the fourth topic, an iterative hard interference cancellation decoder for LDPC codes

in 2-user multiple-access channels is proposed. In such channels, two users send their

codewords to a destination node simultaneously. The main contributions in this topic are

as follows.

• A graph of the codes in 2-user multiple-access channels is given, and includes variable

nodes, check nodes and multiple-access nodes. By this representation, decoding

algorithms can easily be described as message-passing algorithms.

• An iterative hard interference cancellation decoder for LDPC codes in 2-user multiple-

access channels is proposed. The decoder is based on log-likelihood ratios (LLRs),

and interference is estimated, quantized and subtracted from channel outputs.

• To analyze the performance of the codes, density evolution is derived.

• It is shown that the required signal-to-noise ratio (SNR) for the proposed low-

complexity decoder is 0.2 dB higher than that for an existing sub-optimal belief

propagation decoder at code rate 1
3
.
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1.3 Outline of the thesis

This thesis is focused on constructing and designing LDPC codes for wireless relay net-

works. The remainder of the thesis is organized as follows. It begins with definitions

and an introduction to LDPC codes in Chapter 2. Chapter 3 covers the construction

and design of LDPC codes for half-duplex three-phase two-way relay channels where two

nodes communicate with each other with the help of a relay node. The code constructions

are extended to half-duplex three-way relay channels in Chapter 4. Chapter 5 explores

relay selection and LDPC code constructions for the broadcast problem in wireless relay

networks. An iterative hard interference cancellation decoder for LDPC codes in 2-user

multiple-access channels is proposed in Chapter 6. Finally, Chapter 7 concludes this thesis

and lists possible future work.
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Chapter 2

Backgrounds

2.1 Definitions and a theorem

Definition 1. (In [2] Chapter 2) The entropy H(X) of a discrete random variable X is

defined as

H(X) = −
∑
x∈X

p(x) log p(x). (2.1)

Definition 2. (In [2] Chapter 2) The joint entropy H(X, Y ) of a pair of discrete random

variables (X,Y) with a joint distribution p(x, y) is defined as

H(X, Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log p(x, y). (2.2)

Definition 3. (In [2] Chapter 2) The mutual information I(X;Y ) is defined as

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
. (2.3)

Definition 4. (In [2] Chapter 7) The set A
(n)
ε (X, Y ) of jointly typical sequence {(xn, yn)}

with respect to the distribution p(x, y) is the set of n-sequences with empirical entropies
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ε-close to the true entropies:

A(n)
ε = {(xn, yn) ∈ X n × Yn :∣∣∣∣− 1

n
log p(xn)−H(X)

∣∣∣∣ < ε,∣∣∣∣− 1

n
log p(yn)−H(Y )

∣∣∣∣ < ε,∣∣∣∣− 1

n
log p(xn, yn)−H(X, Y )

∣∣∣∣ < ε},

where

p(xn, yn) =
n∏
i=1

p(xi, yi). (2.4)

Theorem 1. (Theorem 7.6.1 in [2]) Let (Xn, Y n) be sequences of length n drawn i.i.d.

according to p(xn, yn) =
∏n

i=1 p(xi, yi). If (X̃n, Ỹn) ∼ p(xn)p(yn), then Pr((X̃n, Ỹ n) ∈
A

(n)
ε ) ≤ 2−n(I(X;Y )−3ε).

2.2 Low-density parity-check codes

2.2.1 Introduction

In 1948, Claude Shannon published his paper A mathematical theory of communication

[3] where a fundamental question of communication systems was answered. He showed

that, for any given channel bandwidth and signal-to-noise ratio (SNR), there exists a rate

below which messages can be reliably decoded. After five decades of research, Turbo codes

[4] became the first capacity-approaching codes with affordable complexity. Shortly after,

low-density parity-check (LDPC) codes [5] were found to be another class of capacity-

approaching codes [6]. LDPC codes were first introduced by Gallager in 1961. However,

they were largely forgotten for almost three decades because the proposed decoding al-

gorithm was simply too complicated to be implemented at that time. Unlike the Viterbi
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algorithm [7] which is a maximum-likelihood decoding algorithm on symbol sequences, the

LDPC decoding algorithm is a maximum a posterior (MAP) algorithm on each individual

symbol. In [8], an LDPC code with a threshold within 0.0045 dB of the Shannon limit was

reported.

In LDPC codes, the fraction of ones in the parity check matrix is small. Due to this

sparseness property, the decoding complexity is on the order of the codeword length. In

addition, soft decoding is used, in which bits are represented by probability values. The

algorithms also decode messages with multiple iteration, e.g., outputs from a decoding

iteration are used as inputs in the next decoding iteration. During the entire iterative

decoding process, belief on bits is gradually strengthened and the bit error rate (BER) is

gradually decreased.

2.2.2 Message-passing algorithms

In this section, message-passing algorithms for LDPC codes are briefly reviewed.

An LDPC code can be represented by a parity-check matrix H which can be mapped

to a corresponding Tanner graph [9]. In such a graph, each codeword bit corresponds

to a variable node and each parity check constraint corresponds to a check node. An

edge connecting a variable node and a check node corresponds to a 1 in the H. Hence,

the Tanner graph is a bipartite graph. With the help of the Tanner graph, the message-

passing algorithms can be easily described. Variable nodes and check nodes are associated

with decoding functions. Messages flow between variable nodes and check nodes via edges,

serving as inputs and outputs of the functions. As an example, the Tanner graph of the

following parity check matrix

H =


1 0 1 1 1 0 0

1 1 1 0 0 1 0

0 1 1 1 0 0 1


is shown in Figure 2.1, where a circle is a variable node and a square is a check node.
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Figure 2.1: Corresponding Tanner graph of a parity check matrix

Assume the channel is Y = X + Z where p(X = 1) = p(X = −1) = 0.5 and Z is

a Gaussian random variable with mean zero and variance σ2. A binary sequence b =

[b1, b2 . . . , bn] is mapped to x = [x1, x2 . . . , xn] from bi ∈ {0, 1} to xi ∈ {−1, 1} for i =

1, 2, · · · , n. At the receiver, the bit bi can be represented by a probability value pair

(p(xi = 1|yi), p(xi = −1|yi)), or a log-likelihood ratio (LLR)

li(yi) = ln
p(xi = 1|yi)
p(xi = −1|yi)

(2.5)

= ln
e−

1
2

(
yi−1

σ
)2

e−
1
2

(
yi+1

σ
)2

(2.6)

=
2yi
σ2
. (2.7)

The message-passing algorithm based on the LLRs can be briefly summarized as follows.

Note that step 2 to step 4 are repeated for iterative decoding until the maximum allowed

iteration number is reached.

Step 1 : Calculate the LLR of the channel output li = 2yi
σ2 for i = 1, 2, · · · , n.

Step 2 : Calculate the check node function. Assume three bits b1, b2, b3 satisfy the

parity check constraint b1 ⊕ b2 ⊕ b3 = 0. When b2 and b3 are represented by LLRs v2 =

ln

(
p(x2 = 1)
p(x2 = −1)

)
and v3 = ln

(
p(x3 = 1)
p(x3 = −1)

)
respectively, the LLR of b1 can be calculated
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in the check node as

c1 = ln

(
p(x1 = 1)

p(x1 = −1)

)
= ln

(
p(x2 = 1)p(x3 = 1) + p(x2 = −1)p(x3 = −1)

p(x2 = 1)p(x3 = −1) + p(x2 = −1)p(x3 = 1)

)
(2.8)

= ln

(
1
2
(e

v2+v3
2 + e−

v2+v3
2 )

1
2
(e

v2−v3
2 + e−

v2−v3
2 )

)
(2.9)

= ln

(
cosh(v2+v3

2
)

cosh(v2−v3
2

)

)
(2.10)

= ln

(
cosh(v2

2
) cosh(v3

2
) + sinh(v2

2
) sinh(v3

2
)

cosh(v2
2

) cosh(−v3
2

) + sinh(v2
2

) sinh(−v3
2

)

)
(2.11)

= ln


1 +

sinh(v2
2

) sinh(v3
3

)

cosh(v2
2

) cosh(v3
2

)

1−
sinh(v2

2
) sinh(v3

3
)

cosh(v2
2

) cosh(v3
2

)

 (2.12)

= ln

(
1 + tanh(v2

2
) tanh(v3

2
)

1− tanh(v2
2

) tanh(v3
2

)

)
(2.13)

= 2 tanh−1
(

tanh
(v2

2

)
tanh

(v3

2

))
(2.14)

where cosh(x) = 1
2
(ex + e−x), cosh(x ± y) = cosh(x) cosh(y) ± sinh(x) sinh(y), tanh(x) =

sinh(x)
cosh(x)

and tanh−1(x) = 1
2

ln
(

1+x
1−x

)
, |x| < 1. The variable (check) node degree is defined as

the number of edges connected to the variable (check) node. A degree-i node is a node

with i edges. A degree-i edge is an edge that is connected to a degree-i node. Assume the

degree of a check node is m. Thus, (2.14) can be extended to

cki = 2× tanh−1

∏
j/i

tanh

(
vkj
2

) (2.15)

where vkj is the LLR received from the j-th connected variable node, cki is the LLR sent to

the i-th connected variable node, k is the decoding iteration index, i, j = 1, 2, · · · ,m and

j/i = 1, 2, · · · , i− 1, i+ 1, · · · ,m.

Step 3 : Calculate the variable node function. Assume a variable node receives two

LLRs c1 = ln

(
p1(x1 = 1)
p1(x1 = −1)

)
and c2 = ln

(
p2(x1 = 1)
p2(x1 = −1)

)
from check nodes or channel
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outputs. The LLR of the bit given c1 and c2 is

ln

(
p(x1 = 1)

p(x1 = −1)

)
= ln

(
p1(x1 = 1)p2(x1 = 1)

p1(x1 = −1)p2(x1 = −1)

)
(2.16)

= ln

(
p1(x1 = 1)

p1(x1 = −1)

)
+ ln

(
p2(x1 = 1)

p2(x1 = −1)

)
(2.17)

= c1 + c2. (2.18)

Assume the degree of a variable node is m. Thus, (2.18) can be extended to

vk+1
i = l +

∑
j/i

ckj (2.19)

where ckj is the LLR from the j-th connected check node, vk+1
i is the LLR sent to the

i-th connected check node, l is the channel output LLR, k is the decoding iteration index,

i, j = 1, 2, · · · ,m and j/i = 1, 2, · · · , i− 1, i+ 1, · · · ,m.

Step 4 : Calculate the posteriori probability. Assume the degree of the variable node is

m. The posteriori probability of the bit is

l +
∑
j

ckj (2.20)

where ckj is the LLR from the j-th connected check node, l is the channel output LLR, k is

the decoding iteration index and j = 1, 2, · · · ,m. If the result is greater than or equal to 0,

bi = 0. Otherwise, bi = 1. Finally, the decoded codeword is verified by testing H×bT = 0.

If b is a valid codeword, the iterative decoding process is stopped.

2.2.3 Density evolution

In this section, density evolution [10, 11, 12, 13] for LDPC codes is reviewed. Density

evolution is an analytic tool to track the probability density function (or simply called

density) of the LLR message (or simply called message) during iterative decoding.

Let us first review regular LDPC codes. In Gallager’s original work [5], a (dv,dc) regular

LDPC code is a binary linear code whose parity check matrix H has dv ones in each column
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and dc ones in each row. The total number of ones in the H is linear with the block length

n. A cycle is defined as a closed path in the bipartite graph. The start vertex and the end

vertex of a cycle are the same vertex. The length of the cycle is defined as the number of

edges in the cycle. To analyze the codes, Gallager put codes without short cycles in a code

ensemble. To be specific, the codes in the ensemble do not contain cycles with the length

less or equal to

2(lnn− ln dvdc−dv−dc
2dc

)

ln [(dc − 1)(dv − 1)]
. (2.21)

Unfortunately, Gallager codes are difficult to construct. In [14], Luby et al. introduced

a new code ensemble based on degree distributions. With this approach, codes in the

ensemble are allowed to have short cycles. Furthermore, sampling a code is almost trivial.

The ensemble of (dv, dc) regular LDPC codes is defined as follows [10]. In a bipartite

graph, assign dv (dc) sockets to every variable (check) node and label these sockets as

positive integers from 1 to ndv. Pick a permutation π on check node socket labels with

uniform distribution. Each code in the ensemble corresponds to a permutation. An edge

of the bipartite graph is a mapping of the socket pair (i,π(i)) where i is a variable node

socket and π(i) is a check node socket.

Irregular LDPC codes were first introduced in [15] and further studied in [14, 13, 10, 11].

Unlike regular LDPC codes, the degree of variable (check) nodes could be different. The

degree of each node is chosen according to the degree distribution.

Denote λ as the variable node degree distribution. λi is the fraction of edges which

are connected to degree-i variable nodes.
∑

i λi = 1. Denote ρ as the check node degree

distribution. ρi is the fraction of edges which are connected to degree-i check nodes.∑
i ρi = 1. The rate of irregular LDPC codes for a given degree distribution (λ, ρ) is

R = 1−
∑

j
ρj
j∑

i
λi
i

. (2.22)

For a given degree distribution (λ, ρ) and codeword length n, an ensemble of irregular
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LDPC codes is defined by a permutation on all edges. All codes in the ensemble are

equiprobable.

It is proved in [10] that if the following three symmetric conditions on the channel and

the decoding algorithm are met, the probability of error is independent of the codeword.

Hence, to simplify the analysis, it is assumed that only the codeword b = [0, 0, · · · , 0] is

transmitted in density evolution.

Channel symmetry:

p(yi = q|xi = 1) = p(yi = −q|xi = −1) (2.23)

Check node symmetry:

ψc(x1m1, x2m2, · · · , xdc−1mdc−1) = −ψc(m1,m2, · · · ,mdc−1)
dc−1∏
i=1

xi (2.24)

where ψc is a check node function and x = [x1, x2, · · · , xdc−1] is a ±1 sequence.

Variable node symmetry:

ψv(−m0, · · · ,−mdv−1) = −ψv(m0, · · · ,mdv−1) (2.25)

where ψv is a variable node function.

Density evolution tracks the probability density function of LLR messages. Messages

on each edge can be represented by a random variable. The output messages of a check

node function (2.15) and a variable node function (2.19) can be represented by functions

of random variables. If threshold decoding (A bit is decoded as 0 if the message is greater

than or equal to zero and decoded as 1 if the message is less than 0) is used, the probability

of error is simply the integral of the probability density function from −∞ to 0.

Generalized density evolution for regular LDPC codes and irregular LDPC codes on

binary-input memoryless channels has been derived in [10] and [11]. Discretized density

evolution [8] and Gaussian approximation [12] are the other two approaches for additive

white Gaussian noise (AWGN) channels. We include them here as an introduction.
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Let us first consider variable node functions. In message-passing algorithms, the output

of a variable node function (2.19) is a sum of multiple messages. Denote the probability

density functions of l and ckj as fl and fckj . Assume these messages are independent. From

probability theory, the probability density function of the sum of two independent random

variables is the convolution of the probability density function of the two independent

random variables. Hence the probability density function of vk+1
i is

fl ⊗ fck1 ⊗ fck2 · · · ⊗ fckdv−1
(2.26)

where ⊗ is the convolution

fX+Y = fX ⊗ fY =

∫ ∞
−∞

fX(a− y)fY (y)dy. (2.27)

(2.26) can be further calculated by

F(fX ⊗ fY ) = F(fX)F(fY ) (2.28)

as

F−1(F(fl)F(fck1 )F(fck2 ) · · · F(fckdv−1
)) (2.29)

where F is the Fourier transform

F(f(x)) =

∫ ∞
−∞

f(x)e−2πifxdx (2.30)

and F−1 is the inverse Fourier transform

F−1(F (f)) =

∫ ∞
−∞

F (f)e2πixfdf. (2.31)

Since the above analysis is based on continuous random variables, it is not convenient for

computer aided analysis. In discretized density evolution [12], the continuous probability

density function f is approximated to the probability mass function

pXd(Xd = x) = fXc(Xc = x)∆x (2.32)
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where Xc and f are the continuous random variable and the corresponding probability den-

sity function, Xd and p are the discrete random variable and the corresponding probability

mass function, and ∆x is the sample interval.

When b = [0, 0, · · · , 0] is sent, the received signal Y is a Gaussian distributed random

variable with mean one and variance σ2. The corresponding LLR of the Y is L = 2Y
σ2 ,

which is a Gaussian distributed random variable with mean 2
σ2 and variance 4

σ2 . Hence the

probability mass function is

pXd(Xd = z∆x) =
σ

2
√

2π
e−8σ2(z∆x− 2

σ2
)2∆x, z ∈ Z, (2.33)

where ∆x is the sample interval and z is an integer. Truncate pXd into a vector with length

N where N is an odd number and z ∈
[
−N−1

2
, N−1

2

]
. Make N large enough to ensure that

N−1
2∑

z=−N−1
2

pXd(Xd = z∆x) approaches 1.

When two probability mass functions pX1 and pX2 are represented by vectors with

length N1 and N2, the probability mass function of X = X1 +X2 is

pX(X = z∆x) =

min(z,
N1−1

2
)∑

z1=max (−N1−1
2

,z−N2−1
2

)

pX1(X1 = z1∆x)pX2(X2 = (z − z1)∆x),

z = −N1 +N2 − 2

2
,−N1 +N2

2
, · · · , N1 +N2 − 2

2
,

z1 = −N1 − 1

2
,−N1 + 1

2
, · · · , N1 − 1

2
, z2 = −N2 − 1

2
,−N2 + 1

2
, · · · , N2 − 1

2
(2.34)

where N1 and N2 are odd numbers.

The probability mass function (2.34) can be calculated by circular discrete convolution.

Circular discrete convolution on two vectors f and g with length N is defined as

zn =
n∑

m=1

fmgn−m+1 +
N∑

m=n+1

fmgN+n−m+1, n = 1, 2, · · · , N. (2.35)

To calculate pX by circular discrete convolution, first append N2 − 1 and N1 − 1 zeros at

the end of the two truncated vectors p̃X1 and p̃X2 . The length of both zero-padded vectors
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is N1 + N2 − 1. After appending, apply circular discrete convolution on the two padded

vectors.

Furthermore, in order to speed up the calculation, circular discrete convolution can

be calculated by DFT−1(DFT(x1(n))×DFT(x2(n))) where DFT is the discrete Fourier

transform

X(k) =
N∑
n=1

x(n)e−
2πi(k−1)(n−1)

N , 1 ≤ k ≤ N (2.36)

and DFT−1 is the inverse discrete Fourier transform

x(n) =
1

N

N∑
k=1

X(k)e−
2πi(k−1)(n−1)

N , 1 ≤ n ≤ N. (2.37)

Note that here x1(n) and x2(n) would be the padded vectors p̃X1 and p̃X2 . The proba-

bility mass function of X1 + X2 + · · · + XN can be calculated based on (((X1 + X2) +

X3)+, · · · ,+XN) by calculating the sum of two random variables N − 1 times where

X1, · · · , XN are independent random variables.

Now let us consider check node functions (2.15). In [10], probability density functions

are calculated by changing measures to the logarithm domain. However, this approach

requires finer quantization due to numerical problems. On the contrary, discretized density

evolution does not change the measures. In general, if discrete random variables X1 and

X2 are independent, the probability mass function of Z = p(X1, X2) is

P (Z = z) =
∑

z=p(x1,x2)

P (X1 = x1)P (X2 = x2) (2.38)

with the summation on all (x1, x2) pairs that satisfy z = p(x1, x2). For the function

Z = 2 tanh−1
(
tanh X1

2
tanh X2

2

)
(from 2.15), the probability mass function of Z is

P (Z = z) =
∑

z=2 tanh−1(tanh
x1
2

tanh
x2
2 )

P (X1 = x1)P (X2 = x2). (2.39)
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If the function is in the form of Z = 2 tanh−1
(∏

i tanh Xi
2

)
, we can calculate PZ by re-

cursively calculating the probability mass function of the function of two input random

variables with (2.39).

For irregular LDPC codes, it is hard to track message densities for a specific code

because in general the densities on each edges are different. However, if a random variable

represents incoming messages of a socket over all codes in the ensemble, densities of input

messages at all variable (check) node sockets would be the same by symmetry. Thus, the

densities of output messages of variable (check) nodes would be the same if the node degrees

are the same. The densities of input messages would be simply a linear combination of the

densities of output messages.

Denote Pi as the probability mass function of messages from degree-i variable nodes and

denote λi as the fraction of degree-i variable node edges. The probability mass function of

input messages of check nodes is a linear combination of Pi∑
i

λiPi (2.40)

Similarly, denote Qi as the probability mass function of messages from degree-i check

nodes and denote ρi as the fraction of degree-i check node edges. The probability mass

function of input messages of variable nodes is a linear combination of Qi∑
i

ρiQi (2.41)

Now we introduce a special density called fixed point. If the density at the decoder

input is the same as the density at the decoder output, the density is a fixed point. For

example, pX = ∆∞ is a fixed point, where ∆ is the Dirac delta function, the corresponding

probability mass function is p(X = ∞) = 1, and the corresponding probability of error

is 0. If the density becomes a fixed point during iterative decoding, the density will not

be changed any more. In [11], It is shown that density evolution for massage-passing

algorithms always converges to a fixed point for irregular LDPC codes. If a non-zero error

fixed point is reached, zero-error decoding cannot be realized.
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A stability condition is the condition under which the density would converge to a

fixed point. In [11], a general stability condition of the fixed point ∆∞ is given for general

binary-input memoryless output-symmetric channels. It is shown that if the density is

close to ∆∞ enough, it would converge to ∆∞.

Now we briefly introduce Gaussian approximation [12]. From (2.19), if all incoming c

messages are independent and identically distributed Gaussian random variables, the sum

v would be Gaussian distributed. Even if c is not Gaussian distributed, the sum would

look like Gaussian if many of them are added due to the central limit theorem. In fact,

the c from (2.15) looks less like Gaussian. However, it is generally safe to assume that c

and v are both Gaussian distributed [12]. Furthermore, it is proved that the variance of

the messages is always twice the mean [10]. Hence, only the mean of the Gaussian random

variable is tracked. With this approximation, the complexity of density evolution reduces

to one dimensional space.

The evolution of the mean of the messages for (dv, dc) regular LDPC codes is

mul = φ−1
(

1− [1− φ(mu0 + (dv − 1)mul−1)]dc−1
)
, (2.42)

where mu0 is the mean of messages from channel outputs, mul is the mean of messages from

check nodes in the l-th decoding iteration, dc is the check node degree, dv is the variable

node degree and φ is defined as

φ(x) =

{
1− 1√

4πx

∫
< tanh u

2
e−

(u−x)2
4x du if x > 0

1 if x=0.
(2.43)

The function φ and the inverse function φ−1 are both monotonically decreasing functions.

Furthermore, φ(x) can be approximated as

φ(x) =

{
e−0.4527x0.86+0.0218 if x ≤ 10√

π
x
e−

x
4 (1 + 1

14x
− 3

2x
) if x > 10.

(2.44)
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In density evolution, it is assumed that incoming messages of variable nodes or check

nodes are independent. This assumption implies that the bipartite graph has no cycles.

However, cycles almost always exist. Hence, it is natural to ask whether density evolution

is still viable when cycles exist? In [10], it is proved that the number of incorrect messages

among all variable-to-check edges converges to the expectation exponentially fast towards

codeword length n for regular LDPC codes. Furthermore, if n tends to infinity, the ex-

pectation converges to the case where no short cycle exists. However, it is much harder

to prove the convergence for irregular LDPC codes. Without this proof, one might expect

that codes with short length would deviate significantly from density evolution results. In

[11], it is shown that the performance of finite length irregular LDPC codes also converges

fast by simulation.

2.2.4 Code optimization

In this section, three code optimization solvers for regular and irregular LDPC codes are

reviewed. In general, the code optimization problem is to find the optimal degree distri-

bution in a large degree distribution space, e.g., maximizing the code rate for a given σ or

maximizing the σ for a given code rate.

First, we review the code optimization for regular LDPC codes. The optimization

objective is to maximize σ for a given code rate. For a fixed (dv, dc), there exists a threshold

σt. Below the threshold, the probability of error is at most ε. Above the threshold, the

probability of error is bigger than a constant. σt can be determined by sweeping the σ from

an upper bound to a lower bound. For each σ, density evolution can be employed to track

the message density and tell whether the (dv, dc) code can be decoded. When thresholds

for all (dv, dc) pairs are known, the optimal (dv, dc) pair is the one with the maximum σt.

Next, we review two optimization solvers for irregular LDPC codes.

Solver 1: In this solver, the optimization objective is to maximize the σ for a given

code rate.
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The problem can be solved by employing a local optimization solver and a global

optimization solver together [11]. The local optimization solver can use the hill climbing

algorithm to find local maxima. In the algorithm, a current best degree distribution (λ∗, ρ∗)

and the corresponding threshold σ∗t are maintained. Each time, the current best degree

distribution is slightly changed. If the new degree distribution has a better σt, it becomes

the current best degree distribution. Here, the local maximum is a σt which cannot be

further increased no matter how the degree distribution is slightly changed.

The complexity of the hill climbing algorithm could be exponentially increased with a

linearly increased variable node degree and check node degree. In [11], it is shown that ρ can

be concentrated. Furthermore, variable node degrees can be limited to 2, 3, a pre-defined

maximum node degree and a few other node degrees in the between.

To further reduce the optimization complexity, the message density at critical points

can be memorized. The critical point is a point where the output message density is almost

the same as the input message density. When a small change on the current best degree

distribution is made, the memorized message density is used as the input message density.

For each small degree distribution change, the decrease of the probability of error in one

decoding iteration can be measured. The degree distribution with the most decreased

probability of error is chosen as the next best degree distribution candidate. Since it is not

guaranteed that the candidate degree distribution can be decoded, the degree distribution

should be verified by density evolution.

To get the global maximum, general global optimization solvers such as multiple-start

algorithms or genetic algorithms [11] can be used. Since these solvers can be found in many

global optimization literatures, the details are omitted here.

Solver 2: In this solver, the optimization objective is to maximize the code rate for a

given σ.

The problem can be solved by a global optimization solver called iterative linear pro-
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gramming [14, 16]. The optimization objective

max
λ,ρ

R = 1−
∑

j≥2 ρj/j∑
i≥2 λi/i

(2.45)

is non-linear when λ and ρ are jointly optimized. The original optimization problem can

be converted into a sequence of sub-optimization problems with different ρ values. For a

fixed ρ, (2.45) is equivalent to maximize a linear objective
∑

i≥2 λi/i.

The sub-optimization problem can now be formulated as

max
λi,i≥2

∑
i≥2 λi/i (2.46)

s.t.
∑

i≥2 λie(p
l+1
i ) < e(pl), l = 1, · · · , L (2.47)∑

i≥2 λi = 1 (2.48)

where e(.) is a function calculating the probability of error of a message density (For

threshold decoding, the function is an integral of the message density from −∞ to 0.),

pl is a mixture density of input messages of check nodes at the l-th decoding iteration,

pl+1
i is the density of output messages of degree i variable nodes at the (l+ 1)-th decoding

iteration, and L is the total number of decoding iterations. Note that pl =
∑

i λip
l
i.

(2.47) is a sequence of constraints on the decoding rule, that is, the probability of error is

monotonically decreased during the iterative decoding. Note that (2.47) is non-linear since

the message density is dependent on the degree distribution (λ, ρ).

In iterative linear programming, the probabilities of error e(pl+1
i ) and e(pl) in the non-

linear (2.47) are treated as constants. By this treatment, the non-linear sub-optimization

problem becomes linear and can be solved by solvers such as simplex method. However,

optimized codes from the simplex method might not be decodable. In this case, they can

be verified by density evolution. In the algorithm, a current best degree distribution and

the corresponding code rate are maintained. If optimized codes can be decoded, their

degree distribution and the code rate become the current best degree distribution and the

current maximum code rate. During density evolution, a new set of e(pl) and e(pl+1
i ) is

calculated, which is applied in the next optimization iteration as constants in (2.47).
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If codes cannot be decoded by density evolution, their code rate might be too high.

To reduce the code rate, the feasible region, which is a space of all variable node degree

distributions that satisfy (2.47) and (2.48), can be shrunk by reducing the value of the

right-hand side (RHS) of (2.47). After the feasible region is shrunk, the total number of

degree distribution candidates is decreased. Hence, the code rate of the optimized code is

decreased. The feasible region is a polytope, which is a geometric object with flat sides.

Inside the feasible region, some codes can be decoded, while some cannot. It is also possible

that higher rate codes outside the feasible region can be decoded.
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Chapter 3

Low-density Parity-check Codes for

Half-duplex Three-phase Two-way

Relay Channels

3.1 Introduction

In recent decades, cooperative communications [17] have been developed to achieve higher

communication rates. A typical example of cooperative communications is the communica-

tion through relay channels [18] where a source node transmits information to a destination

node with the help of a relay node. Although the exact capacity of the relay channel is

still unknown, two different relay schemes, known as decode-and-forward and compress-

and-forward [18], have been developed. In general, when the source-relay link is reliable,

the decode-and-forward scheme is a better choice since noise can be fully eliminated.

A natural extension of the one-way relay channel is the two-way case where two terminal

nodes exchange information with the help of a relay node. Some fundamental bounds

[19, 20, 21] for two-way relay channels have been proposed by several research groups. In

[19], an achievable rate region of the decode-and-forward scheme based on block Markov
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superposition coding and an achievable rate region of the compress-and-forward scheme

based on Wyner-Ziv coding for full-duplex two-way relay channels were proposed. In [20],

another achievable rate region for full-duplex two-way relay channels was proved by using

random binning. The authors of [21] determined the capacity region of the broadcast phase

of the two-way relay channels when destination nodes use side information for decoding.

In addition to the research on fundamental bounds, various practical coding schemes

have also been proposed for relay channels. Constructing codes for such channels is chal-

lenging, especially when messages are encoded into multiple streams and a destination

node receives signals from multiple nodes. Low-density parity-check (LDPC) codes were

proposed for one-way relay channels in [22, 23, 16]. In [22], codes within 1.2 dB of the

theoretical limit were found. Furthermore, LDPC codes with random puncturing were

applied to fading relay channels in [23]. In order to improve the performance of one-way

relay channels, bilayer LDPC codes were designed based on the bilayer density evolution

in [16].

Two-way relay channels can be generally modeled as two-phase or three-phase. In the

two-phase case, the relay node receives superimposed signals from the two source nodes.

Considering this unique property, various coding schemes, such as physical-layer network

coding [1], repeat-accumulate codes [24], lattice codes [25] and LDPC codes [26, 27], have

been proposed recently.

In this chapter, we focus on half-duplex three-phase two-way relay channels. Half-

duplex is a practical assumption since it is generally difficult for a node to detect weak

received signals when they are mingled with its own strong transmitting signals. Compared

with two-phase two-way relay channels, signals from the source node can be utilized for

decoding at the destination node. In addition, decoding at the relay node is simpler since

no superimposed signals are involved. However, to the best of our knowledge, only a

few practical coding schemes [28, 29] have been proposed for three-phase two-way relay

channels.

In this chapter, we propose LDPC codes for half-duplex three-phase two-way relay
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channels [30, 31]. LDPC codes are good candidates since they can approach the capacities

of point-to-point channels. In addition, they have a comprehensive set of design tools along

with their flexible code constructions.

The main contributions of this chapter are four-fold. First, an achievable rate region

for half-duplex three-phase two-way relay channels is proved. Second, inspired by random

coding, a code construction is proposed which is composed of two irregular LDPC codes

at terminal nodes and a systematic LDPC code at the relay node. Note that the relay

codeword can be generated by simply adding two source codewords in GF(2). However,

simple addition is not optimal if links between the source node and the relay node are

asymmetric since equal amounts of information from the two codewords are included in

the relay codeword. Encoding by systematic LDPC codes at the relay node can be thought

of as parity forwarding or random binning on multiple sources. This code construction is

similar to that of non-systematic low-density generator matrix (LDGM) codes [32], or

Luby transform (LT) codes (a class of rateless code) [33], which were originally proposed

for point-to-point channels. Third, in order to analyze the performance of the codes, dis-

cretized density evolution is derived. Last, based on the discretized density evolution, a

three-step degree distribution optimization is proposed based on iterative linear program-

ming. It is shown that the length of the obtained optimized codes is 26% longer than the

theoretic one.

This chapter is organized as follows. It begins with an introduction of the system model

and a proof of an achievable rate region for half-duplex three-phase two-way relay chan-

nels in section 3.2. Section 3.3 presents LDPC code constructions and the corresponding

graphs. In addition, a message-passing algorithm is proposed in section 3.4. In section 3.5,

discretized density evolution is derived as a tool to analyze the codes. An iterative linear

programming algorithm for code optimization is introduced in section 3.6. An optimized

degree distribution is reported and decoding simulation results are included in section 3.7.

Finally, section 3.8 concludes this chapter.
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3.2 System model and an achievable rate region

3.2.1 System model

In two-way relay channels, two terminal nodes communicate with each other with the help

of a relay node. We consider the case when signals from the source node can be utilized for

decoding at the destination node. In this case, the transmission over half-duplex two-way

relay channels can be modeled as a three-phase transmission. We label the two terminal

nodes as node 1 and node 2, respectively, and label the relay node as node 3. In phase 1,

node 1 encodes its message and broadcasts the codeword. Both node 2 and node 3 can

receive signals. In phase 2, node 2 encodes its message and broadcasts the codeword. Both

node 1 and node 3 can receive signals. The relay node can decode the message of node 1

and node 2 at the end of phase 1 and phase 2, respectively. In phase 3, node 3 encodes

the two source codewords to a relay codeword and broadcasts the relay codeword. Both

node 1 and node 2 can receive signals. At the end of phase 3, node 1 can jointly decode

the message of node 2 from signals received from node 2 in phase 2, signals received from

node 3 in phase 3 and its own codeword. Similarly, node 2 can jointly decode the message

of node 1. The three-phase model is shown in Figure 3.1.

1 2

3

1 2

3

1 2

3

Phase 1 Phase 2 Phase 3

Figure 3.1: Three phases in half-duplex two-way relay channels
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3.2.2 An achievable rate region of half-duplex three-phase two-

way relay channels

In this section, we prove an achievable rate region of half-duplex three-phase two-way relay

channels. Note that an achievable rate region for full-duplex two-way relay channels was

given in [20].

The two-way relay channel consists of source input alphabet sets X1, X2, X3, channel

output alphabet sets Y1, Y2, Y3 and a set of distributions p(y1, y2, y3|x1, x2, x3). Consid-

ering time division, the distributions during phase 1, phase 2 and phase 3 are p(y2, y3|x1),

p(y1, y3|x2) and p(y1, y2|x3), respectively.

Assume the lengths of codewords in the three phases are n1, n2 and n3, respectively,

and n =
∑3

i=1 ni. Set α = n1

n
, β = n2

n
and γ = n3

n
.

A ((2nR1 , 2nR2), n1, n2) code for the half duplex three-phase two-way relay channel con-

sists of two sets of integers W1 = {1, 2, · · · , 2nR1} and W2 = {1, 2, · · · , 2nR2}, three en-

coding functions X1 : W1 → X n1
1 , X2 : W2 → X n2

2 and X3 : W1 ×W2 → X n3
3 , and four

decoding functions Yn1
3 →W1, Yn2

3 →W2, Yn1
2 × Yn3

2 →W1, and Yn2
1 × Yn3

1 →W2.

Theorem 2. For discrete memoryless half-duplex three-phase two-way relay channels, all

rate pairs (R1, R2) satisfying

R1 < min {αI(X1;Y3), γI(X3;Y2) + αI(X1;Y2)} (3.1)

and

R2 < min {βI(X2;Y3), γI(X3;Y1) + βI(X2;Y1)} (3.2)

are achievable for some p(x1)p(x2)p(x3) where α + β + γ = 1.

Proof. Codebook generation: Generate 2nR1 codewords x1 = xn1
1 according to

∏n1

i=1 p(x1)

and index them as x1(w1), w1 ∈ {1, 2, · · · , 2nR1}. Generate 2nR2 codewords x2 = xn2
2

according to
∏n2

i=1 p(x2) and index them as x2(w2), w2 ∈ {1, 2, · · · , 2nR2}. Generate
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2n(R1+R2) codewords x3 = xn3
3 according to

∏n3

i=1 p(x3) and index them as x3(w1, w2),

w1 ∈ {1, 2, · · · , 2nR1}, w2 ∈ {1, 2, · · · , 2nR2}.

Encoding: In phase 1, to send index w1, node 1 sends x1(w1). In phase 2, to send w2,

node 2 sends x2(w2). In phase 3, node 3 sends x3(ŵ1, ŵ2) after decoding w1 and w2 (See

the decoding part).

Decoding: Denote yi,j as the channel output at node i in phase j. At the end of phase

1, node 3 decodes w1 by finding the unique ŵ1 that satisfies the joint typicality check

(x1(ŵ1),y3,1) ∈ A(n1)
ε (X1, Y3) where A

(n1)
ε (X1, Y3) is the set of jointly typical sequences of

X1 and Y3. If there is no such or more than one such ŵ1, an error is declared. Similarly, at

the end of phase 2, node 3 decodes w2 by finding the unique ŵ2 that satisfies (x2(ŵ2),y3,2) ∈
A

(n2)
ε (X2, Y3). If there is no such or more than one such ŵ2, an error is declared. At the

end of phase 3, node 1 decodes w2 by finding the unique ŵ2 that satisfies (x2(ŵ2),y1,2) ∈
A

(n2)
ε (X2, Y1) and (x3(w1, ŵ2),y1,3) ∈ A

(n3)
ε (X3, Y1). Node 2 decodes w1 by finding the

unique ŵ1 that satisfies (x1(ŵ1),y2,1) ∈ A(n1)
ε (X1, Y2) and (x3(ŵ1, w2),y2,3) ∈ A(n3)

ε (X3, Y2).

Analysis of the probability of error: When node 1 sends x1(w1), the probability that

independent x1 and y3,1 are jointly typical is upper bounded by 2−n1(I(X1;Y3)−3ε). There

are in total 2nR1 − 1 such x1. With the union bound, the probability of error at node

3 is upper bounded by (2nR1 − 1)2−n1(I(X1;Y3)−3ε), which approaches zero when n1 → ∞
and R1 < αI(X1;Y3) (from nR1 − n1I(X1;Y3) < 0 and α = n1

n
). Similarly, we need

R2 < βI(X2;Y3) for node 3 to decode x2.

When node 2 sends x2(w2), the probability that independent x2 and y1,2 are jointly

typical is upper bounded by 2−n2(I(X2;Y1)−3ε). When node 3 sends x3(ŵ1, ŵ2), the probabil-

ity that independent x3 and y1,3 are jointly typical is upper bounded by 2−n3(I(X3;Y1)−3ε).

There are totally 2nR2 − 1 such w2 when node 1 knows w1. With the union bound,

the probability of the event that any independent x2 and y1,2 are jointly typical and

any independent x3 and y1,3 are jointly typical at node 1 is upper bounded by (2nR2 −
1)2−n2(I(X2;Y1)−3ε)2−n3(I(X3;Y1)−3ε), which approaches zero when n2 → ∞, n3 → ∞ and

R2 < βI(X2;Y1) + γI(X3;Y1) (from nR2 − n2I(X2;Y1) − n3I(X3;Y1) < 0, β = n2

n
and
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γ = n3

n
). Similarly, R1 < αI(X1;Y2) + γI(X3;Y2) is required for node 2 to decode w1.

α, β, γ can be optimized by maximizing R1 + R2 in two-way relay channels by the

following linear programming:

max
α,βγ,R1,R2

R1 +R2 (3.3)

s.t. α + β + γ = 1 (3.4)

0 ≤ α, β, γ ≤ 1 (3.5)

R1, R2 ≥ 0 (3.6)

R1 ≤ αI(X1;Y3) (3.7)

R1 ≤ γI(X3;Y2) + αI(X1;Y2) (3.8)

R2 ≤ βI(X2;Y3) (3.9)

R2 ≤ γI(X3;Y1) + βI(X2;Y1). (3.10)

Gaussian half-duplex three-phase two-way relay channels can be modeled as follows.

In phase 1, Y3,1 = X1 + Z3,1 and Y2,1 = X1 + Z2,1. In phase 2, Y3,2 = X2 + Z3,2 and

Y1,2 = X2 + Z1,2. In phase 3, Y1,3 = X3 + Z1,3 and Y2,3 = X3 + Z2,3. Zi,j is a Gaussian

distributed random variable with mean zero and variance σ2
i,j, where i is the source node

and j is the destination node. When binary phase-shift keying (BPSK) is considered,

the codeword bit is mapped from {0, 1} to {1,−1}. The signal X1 = (X1,1, · · · , X1,n1)

has a power constraint 1
n1

∑n1

i=1 X
2
1,i ≤ P1. Similarly, X2 and X3 have power constraints

1
n2

∑n2

i=1 X
2
2,i ≤ P2 and 1

n3

∑n3

i=1 X
2
3,i ≤ P3.

For Gaussian half-duplex three-phase two-way relay channels, all rate pairs (R1, R2)

satisfying

R1 < min

(
1

2
α log2

(
1 +

P1

N3,1

)
,

1

2
α log2

(
1 +

P1

N2,1

)
+

1

2
γ log2

(
1 +

P3

N2,3

))
(3.11)
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and

R2 < min

(
1

2
β log2

(
1 +

P2

N3,2

)
,

1

2
β log2

(
1 +

P2

N1,2

)
+

1

2
γ log2

(
1 +

P3

N1,3

))
(3.12)

are achievable where Ni,j = σ2
i,j and α + β + γ = 1. Note that (3.11) and (3.12) can be

easily derived from (3.1) and (3.2).

In Figure 3.2, the achievable rate R1 is plotted when α = β = γ = 1
3

and P1

N3,1
= 1. The

x-axis and y-axis are signal-to-noise ratios (SNRs) P1

N2,1
and P3

N2,3
, respectively. The z-axis

is the achievable rate R1. The flat area is the area where R1 is limited by the SNR of

the source-relay link, while the slope area is the area where R1 is limited by SNRs of the

source-destination link and the relay-destination link.

−10

−8

−6

−4

−2

0

−10

−8

−6

−4

−2

0
0

0.05

0.1

0.15

0.2

P
1
/N

2,1
 (dB)P

3
/N

2,3
 (dB)

R
1

Figure 3.2: Achievable rates of R1 for
(

P1

N2,1
, P3

N2,3

)
pairs

In Figure 3.3, the achievable rate R1 is plotted when α = β = γ = 1
3

and P1

N2,1
= P3

N2,3
.

The x-axis and y-axis are SNRs P1

N3,1
and P1

N2,1

(
P3

N2,3

)
. The z-axis is the achievable rate R1.

The left slope area is the area where R1 is limited by the SNR of the source-relay link,
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while the right slope area is the area where R1 is limited by SNRs of the source-destination

link and the relay-destination link.
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Figure 3.4 shows the sum-rate difference between three-phase two-way relay channels

and two-phase two-way relay channels. Node 1 and node 2 are located at (-0.5,0) and

(0.5,0), respectively. The relay node 3 can be located at an arbitrary location. Assume the

link rate between any two nodes is

ri,j =
1

2
log2

1 +

Pi
dαi,j

σ2
i,j

 (3.13)

where Pi is the power of node i, σ2
i,j is the noise power at node j when node i sends, di,j

is the distance between node i and node j, and α is the path loss exponent. The sum rate

of three-phase two-way relay channels is hence

rs,3 = min

(
1

3
r1,3,

1

3
r1,2 +

1

3
r3,2

)
+ min

(
1

3
r2,3,

1

3
r2,1 +

1

3
r3,1

)
(3.14)
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when α = β = γ = 1
3
. The sum rate of two-phase two-way relay channels is

rs,2 = min

(
min (r3,1, r3,2) ,

1

4
log2

(
1 +

P
dα1,3

+ P
dα2,3

σ2

))
(3.15)

where σ2
3 is the noise power at node 3, and time durations of the two phases are the same.

When the rate difference rs,3 − rs,2 is positive, the three-phase case outperforms. When

the rate difference is negative, the two-phase case outperforms. As we can see, at most

locations between the two terminal nodes, the three-phase case outperforms.
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Figure 3.4: Sum-rate difference between three-phase two-way relay channels and two-phase

two-way relay channels
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3.3 Low-density parity-check code constructions and

graph representations

In this section, we propose LDPC code constructions for half-duplex three-phase two-way

relay channels and show the corresponding graph representations.

At terminal node i for i = 1, 2, the node encodes a ki-bit message into an ni-bit

codeword. The codeword is broadcast to the relay node and the other terminal node.

Under the decode-and-forward scheme, the relay node can decode the message, whereas

the other terminal node cannot decode without the help of the relay node. Intuitively, with

additional bits from the relay node, the effective code rate is reduced.

Next, two code constructions at the relay node are given. In code construction 1, two

source codewords are disjointly encoded. In code construction 2, two source codewords are

jointly encoded.

Code construction 1: At the relay node, the relay codewords (also called relay bits) r1

and r2 are generated by two systematic LDPC codes, where r1 = c1G1 and r2 = c2G2.

The lengths of the source codewords c1, c2 and relay codewords r1, r2 are n1, n2, n3 and

n4, respectively. r1 and r2 are broadcast to both terminal nodes. c1 and c2 are not sent.

The sizes of the generator matrices G1 and G2 are n1×n3 and n2×n4, respectively. Since

in general n3 is less than n1, and n4 is less than n2, multiple source codeword pairs are

mapped to a relay codeword. This scheme is often called binning or parity forwarding [16].

A relay codeword can be considered as a bin index. All source codeword pairs that satisfy

parity check constraints with the relay codeword are in the same bin.

This code construction is similar to those of non-systematic LDGM codes [32] and LT

codes [33]. LDGM codes were initially proposed as an alternative to LDPC codes. In these

codes, check bits c are generated from source bits s by c = sG. For systematic LDGM

codes, both source bits and check bits are sent to a destination node. For non-systematic

LDGM codes, only check bits are sent. LDGM codes were proposed for channels with

known channel parameters and their code rates are fixed. LT codes are the first practical
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rateless codes, and originated from Fountain codes [34]. They can be considered as non-

systematic LDGM codes, though check bits are continuously generated until a receiver can

recover the source message.

In general, any linear code can be represented by a Tanner graph [9]. Variable nodes

and check nodes are two types of nodes in the graph. The variable node corresponds to a

bit in a codeword, or a column in a parity check matrix. The check node corresponds to a

parity check constraint, or a row in a parity check matrix. The graph of code construction

1 at the relay node is shown in Figure 3.5. Circles are variable nodes and squares are check

nodes. The corresponding graph for decoding at the destination node is shown in Figure

3.6.

......
1 n1

...
1 m12

2

...

...
1 n32

......
1 n2

...
1 m22

2

...

...
1 n42

Figure 3.5: Graph of code construction 1 at the relay node

Code construction 2: At the relay node, two codewords c1 and c2 from terminal nodes

are concatenated as a source message c = [c1c2]. The lengths of c1, c2 and c are n1, n2

and n1 + n2 respectively. An n3-bit relay codeword r is generated by a systematic LDPC

code where r = cG and G is a generator matrix with the size (n1 +n2)×n3. r is broadcast

to both terminal nodes. c is not sent. Here, 2n1+n2 codeword pairs are mapped to 2n3
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Figure 3.6: Graph for decoding with code construction 1 at terminal nodes

codewords. Since n3 is in general less than n1 + n2, multiple codeword pairs are mapped

to a relay codeword.

The graph of code construction 2 at the relay node is shown in Figure 3.7. The n3 upper

layer variable nodes (in black) represent the relay bits. The lower layer n1 variable nodes

(in white) and n2 variable nodes (in grey) represent two source codewords from terminal

nodes.
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1 n22

...

...
1 n32

Figure 3.7: Graph of code construction 2 at the relay node
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Note that the above graph is a bipartite graph. The n3 upper layer variable nodes can

be moved to the lower layer, as shown in Figure 3.8. The total number of variable nodes is

n1 + n2 + n3. The first two groups of variable nodes represent codewords of two terminal

nodes, called Group 1 variable nodes and Group 2 variable nodes respectively. The n3

right-most variable nodes represent relay bits, called Group 3 variable nodes.

......
1 n12

......
1 n22

...

...
1 n3

1 n32

Figure 3.8: Equivalent graph of code construction 2 at the relay node

At the terminal node, messages are decoded based on three pieces of information:

signals received from the source terminal node, signals received from the relay node, and

the codeword of the destination node. The graph for decoding is shown in Figure 3.9.

Compared to Figure 3.8, two groups of check nodes are added to the lower layer. These

check nodes represent parity check constraints of LDPC codes at the terminal node, which

are called Group 1 check nodes and Group 2 check nodes, respectively. The upper layer

check nodes are called Group 3 check nodes. Group 3 check nodes in Figure 3.9 can also

be moved to the lower layer. In this sense, the decoding algorithm at the terminal node is

similar to those for point-to-point channels. In the following sections, we propose message-

passing algorithms, discrete density evolution and iterative linear programming based on

code construction 2.
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Figure 3.9: Graph for decoding with code construction 2 at terminal nodes

3.4 Message-passing algorithms

In this section, we propose message-passing algorithms for decoders in half-duplex three-

phase two-way relay channels. In such channels, decoding happens at all three nodes.

Since any existing decoding algorithms for point-to-point channels can be used at the relay

node, the details are omitted here. In the following, we focus only on the message-passing

algorithm at destination nodes.

Binary input additive white Gaussian noise (BIAWGN) half-duplex three-phase two-

way relay channels are Gaussian half-duplex three-phase two-way relay channels with the

constraint xi ∈ {1,−1} for i = 1, 2, 3. The received bit can be represented by a probability

pair (p(xj = 1|yi,j), p(xj = −1|yi,j)), or in a log-likelihood ratio (LLR) form

log
p(xj = 1|yi,j)
p(xj = −1|yi,j)

=
2yi,j
σ2
i,j

(3.16)

for i, j = 1, 2, 3.
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A half-duplex three-phase two-way relay channel is said to be memoryless if

p(y2,1,y3,1|x1) =
∏
t

p(y2,1,t, y3,1,t|x1,t), (3.17)

p(y1,2,y3,2|x2) =
∏
t

p(y1,2,t, y3,2,t|x2,t), (3.18)

p(y1,3,y2,3|x3) =
∏
t

p(y1,3,t, y2,3,t|x3,t). (3.19)

In addition, it is said to be symmetric if

p(y2,1,t, y3,1,t|x1,t = 1) = p(−y2,1,t,−y3,1,t|x1,t = −1), (3.20)

p(y1,2,t, y3,2,t|x2,t = 1) = p(−y1,2,t,−y3,2,t|x2,t = −1), (3.21)

p(y1,3,t, y2,3,t|x3,t = 1) = p(−y1,3,t,−y2,3,t|x3,t = −1). (3.22)

In the following, only decoding functions at node 1 are derived since decoding functions

at node 2 are similar.

A decoding algorithm can generally be considered as functions on multiple input vari-

ables. At node 1, decoding is based on channel outputs y1,2, y1,3 and side information x1.

For a bit-wise maximum a posterior (MAP) decoder,

x̂2,i = arg max
x2,i

p(x2,i|x1,y1,2,y1,3) (3.23)

= arg max
x2,i

∑
∼x2,i

p(x2|x1,y1,2,y1,3) (3.24)

= arg max
x2,i

∑
∼x2,i

p(y1,2,y1,3|x1,x2,x3)p(x1,x2,x3) (3.25)

= arg max
x2,i

∑
∼x2,i

∏
j

p(y1,2,j|x2,j)
∏
k

p(y1,3,k|x3,k)1x1∈C1,x2∈C2,x3=f(x1,x2), (3.26)

where i, j, k are the time indices, C1 and C2 are code books at node 1 and node 2, respec-

tively, and 1 is the indicator function. Equations (3.23) to (3.24) are based on the law of

total probability.
∑
∼x2,i is a summation over all bits of x2 except the bit x2,i. (3.24) to
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(3.25) is based on the Bayes’ theorem. The codeword x3 is added since x3 = f(x1,x2).

Equations (3.25) to (3.26) are based on the memoryless channel assumption and the uni-

form distributed codeword pair (x1,x2) assumption. We also assume that each bit in

the x1,x2,x3 is independently generated. Note that, in fact, bits among a codeword are

dependent due to parity check constraints.

With the help of the graph in Figure 3.9, the message-passing algorithm can be easily

described. Variable nodes and check nodes are associated with decoding functions. Mes-

sages flow between variable nodes and check nodes via edges, serving as inputs or outputs

of the functions. The algorithm adopts an iterative decoding method by passing mes-

sages multiple times between variable nodes and check nodes. In variable nodes, functions

are in the form of summation (See (2.19)). In check nodes, functions are in the form of

2 tanh−1(
∏

tanh) (See (2.15)). In general, a message passing schedule is required during

the iterative decoding. In this work, a flooding schedule is used. In this schedule, all

messages from variable nodes are passed to check nodes along all edges, and all output

messages from check nodes are passed back to variables nodes thereafter to complete one

decoding iteration.

Let vli be a message from a Group i variable node to a Group i check node in the

l-th decoding iteration for i = 1, 2. Let uli be a message from a Group i check node to

a Group i variable node in the l-th decoding iteration for i = 1, 2. Let vli,3 be a message

from a Group i variable node to a Group 3 check node in the l-th decoding iteration for

i = 1, 2, 3. Let ul3,i be a message from a Group 3 check node to a Group i variable node in

the l-th decoding iteration for i = 1, 2, 3. For a variable node, a lower/upper variable node

degree is defined as the total number of edges connected to a lower/upper layer check node.

An upper/lower-degree-i variable node is a variable node with i upper/lower edges. An

upper/lower-degree-i variable node edge is an edge connected to an upper/lower-degree-i

variable node. Let di be a lower degree of a Group i variable node for i = 1, 2. Let d3,i be

an upper degree of a Group i variable node for i = 1, 2, 3. Let gi be a degree of a Group

i check node for i = 1, 2. A Group 3 check node has three degrees. Let g3,i be a degree of

a Group 3 check node, a degree that is the total number of edges connecting to a Group i
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variable node for i = 1, 2, 3. Let u0,i be a channel output LLR associated with a Group i

variable node for i = 1, 2, 3.

The functions used for decoding messages of terminal node 2 at terminal node 1 are

vl2 =

d2−1∑
i=1

ul−1
2,i +

d3,2∑
j=1

ul−1
3,2,j + u0,2, (3.27)

vl1,3 = u0,1, (3.28)

vl2,3 =

d2∑
i=1

ul−1
2,i +

d3,2−1∑
j=1

ul−1
3,2,j + u0,2, (3.29)

vl3,3 = u0,3, (3.30)

ul3,2 = 2 tanh−1

[
g3,1∏
i=1

tanh

(
vl1,3,i

2

)
g3,2−1∏
j=1

tanh

(
vl2,3,j

2

)
tanh

(
vl3,3
2

)]
, (3.31)

ul2 = 2 tanh−1

[
g2−1∏
i=1

tanh

(
vl2,i
2

)]
. (3.32)

The function in Group 1 variable nodes is shown in (3.28). Since terminal node 1 knows

its own codeword, the intrinsic values of Group 1 variable nodes are +∞ or −∞. Hence,

no matter what messages are received from check nodes, Group 1 variable nodes always

send u0,1 (+∞ or −∞) to upper check nodes. The function in Group 3 variable nodes

is shown in (3.30). Group 3 variable nodes send only u0,3, since the degree of Group 3

variable nodes is 1. Functions in Group 2 variable nodes are shown in (3.27) and (3.29).

Group 2 variable nodes receive messages ul−1
3,2,j and ul−1

2,i from upper layer check nodes and

lower layer check nodes respectively. These messages are added together with the channel

output LLR u0,2 = 2y1,2
σ2
1,2

. The output vl2,3 is sent to a Group 3 check node in the upper

layer. The output vl2 is sent to a Group 2 check node in the lower layer. The function in

Group 3 check nodes at the upper layer is shown in (3.31). Upper layer check nodes send

only the output message ul3,2 to a Group 2 variable node. The function of Group 2 check
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nodes at the lower layer is shown in (3.32). The output ul2 is sent to a Group 2 variable

node.

3.5 Discretized density evolution

In this section, density evolution [10] is used as a tool to analyze codes in message-passing

algorithms for half-duplex three-phase two-way relay channels.

First, we formally define an ensemble of codes via graphs in half-duplex three-phase

two-way relay channels. The ensemble is a sequence of codes with the same variable node

degree distributions and check node degree distributions.

For systematic LDPC codes at the relay node, we define one variable node degree dis-

tribution and two check node degree distributions. These degree distributions are defined

from a node perspective. Since the relay node forwards only partial information of the

source codeword, we allow degree 0 as an upper degree of a variable node. The upper-

degree-0 variable node does not connect to any upper layer check nodes. Denote λ3 as the

variable node degree distribution. λ3,i,j is the fraction of the total number of upper-degree-j

variable nodes in Group i variable nodes to the total number of all three groups of variable

nodes.
∑

i,j λ3,i,j = 1. Denote ρ3,1 and ρ3,2 as the two check node degree distributions.

ρ3,i,j is the fraction of the total number of upper layer check nodes with degree d3,i = j to

the total number of all upper layer check nodes.
∑

j ρ3,i,j = 1 for i = 1, 2.

The ensemble of codes is defined based on four permutations: πi is a permutation for

codes at terminal node i for i = 1, 2; π3 and π4 are permutations for the code at the relay

node. The definitions of π1 and π2 are the same as those in point-to-point channels. Here,

we define only π3 and π4. Assign some sockets to every Group i variable node according to

the degree distribution λ3,i for i = 1, 2. The sockets on Group i variable nodes are called

Group i variable node sockets. Assign two groups of sockets to every upper layer check

node according to degree distributions ρ3,1 and ρ3,2. We call them Group i check node

sockets for i = 1, 2. Edges connecting to Group i check node sockets are connected to
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Group i variable nodes. Two groups of variable node sockets and two groups of check node

sockets are labeled separately with positive integers starting from 1. Group 1 and Group

2 check node socket labels are permuted by π3 and π4. Edges are identified by pairs of

sockets, and are denoted as (i, π3(i)) and (j, π4(j)), where i or j is a Group 1 or Group 2

variable node socket, π3(i) or π4(j) is a check node socket in the two groups of check node

sockets respectively. A code is an element in the permutation space π1× π2× π3× π4. All

codes in the permutation space are equiprobable.

Recall that in point-to-point channels, if the three symmetric conditions (2.23-2.25) are

met, the probability of error is independent of the codeword. Since the three conditions

are also met in half-duplex three-phase two-way relay channels, the probability of error is

independent of the codeword. Hence, we assume that only codewords b = [0, 0, · · · , 0] are

transmitted at both terminal nodes and the relay node. By this assumption, the channel

output Yi,j is a Gaussian distributed random variable with the parameter N (1, σ2
i,j). A

received codeword bit is represented by the LLR Li,j =
2Yi,j
σ2
i,j

, which is a Gaussian distributed

random variable with the parameter N ( 2
σ2
i,j
, 4
σ2
i,j

).

In discretized density evolution, probability density functions are approximated by

probability mass functions. Recall that the function of the variable node is a sum of

independent random variables, e.g. (3.27) and (3.29). The probability mass function of

the sum of two independent discrete random variables can be calculated by convolving the

probability mass functions of the two random variables by (2.34) or by circular discrete

convolution (2.35). Furthermore, in order to speed up the calculation, the circular discrete

convolution can be calculated by discrete Fourier transform (2.36) and inverse discrete

Fourier transform (2.37).

For a variable node with an upper degree i and a lower degree j, denote the probability

mass function of input messages on the upper edge and the lower edge as Pi and Pj,

respectively. The probability mass function of the output messages on upper edges is

P l
v = P0 ∗ {⊗i−1P

l−1
i } ∗ {⊗jP l−1

j } (3.33)

where l is the decoding iteration number, ∗ is discrete convolution, ⊗i is discrete convolution
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on i random variables, and P0 is the probability mass function of the channel output LLR

message. Similarly, the probability mass function of the output messages on lower edges is

P l
v = P0 ∗ {⊗iP l−1

i } ∗ {⊗j−1P
l−1
j }. (3.34)

In general, if discrete random variables X1 and X2 are independent, the probability

mass function of Z = p(X1, X2) is

P (Z = z) =
∑

z=p(x1,x2)

P (X1 = x1)P (X2 = x2). (3.35)

The probability mass function of check node output messages in (3.31) and (3.32) can be

calculated by this way. For the function Z = 2 tanh−1
(
tanh X1

2
tanh X2

2

)
, the probability

mass function of Z is

P (Z = z) =
∑

z=2 tanh−1(tanh
x1
2

tanh
x2
2 )

P (X1 = x1)P (X2 = x2). (3.36)

If the function is in the form of Z = 2 tanh−1
(∏

i tanh Xi
2

)
, we can calculate PZ by re-

cursively calculating the probability mass function of the function of two input random

variables with (3.36).

Probability mass functions of random variables X1, X2 and Z can be represented by

vectors X1, X2 and Z, respectively. Assume that the length of the vectors is N . xi,j =

p(Xi = (j − 1− N−1
2

)∆) where i = 1, 2, j = 1, 2, · · · , N ,
∑

j xi,j = 1 and ∆ is an interval.

To calculate the probability mass function of Z = p(X1, X2), we first calculate a matrix

M, where

mi,j = round
(

2 tanh−1
(

tanh
(x1,i

2

)
tanh

(x2,j

2

)))
, (3.37)

i, j = 1, 2, · · · , N , and the function round(x) is to round the x to the nearest number in

the set {i∆} for i ∈ Z. Then

zk = p

(
Z =

(
k − 1− N − 1

2

)
∆

)
=

∑
mi,j=(k−1−N−1

2 )∆

p(X1 = x1,i)p(X2 = x2,j), (3.38)
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for k = 1, 2, · · · , N .

Denote P2,i as the probability mass function of output messages from upper-degree-i

Group 2 variable nodes. The probability mass function of input messages at Group 2 check

node sockets is ∑
i

λ3,2,iP2,i. (3.39)

Denote Q2,i as the probability mass function of output messages from upper layer check

nodes with degree d3,2 = i. The probability mass function of input messages at Group 2

variable node sockets is ∑
i

ρ3,2,iQ2,i. (3.40)

3.6 Code optimization

In this section, we propose a three-step code optimization to find good codes for half-duplex

three-phase two-way relay channels.

In the first two code optimization steps, two irregular LDPC codes for the two source-

relay links are designed. Since the underlying channels are point-to-point channels, any

existing optimization methods [10, 11, 12, 8] for such channels can be used.

In this work, iterative linear programming [16] is used as the optimization solver. In

this solver, the code rate is maximized when σ2
3,i is given for i = 1, 2. A feasible region is a

space on λi and ρi where λi is a variable node degree distribution of irregular LDPC codes

at terminal node i and ρi is a check node degree distribution of irregular LDPC codes at

terminal node i. When the degree of ρi is concentrated [12], the optimization problem

becomes a sequence of sub-problems: finding an optimal λi with a fixed ρi. The details of

iterative linear programming for point-to-point channels can be found in Appendix II of

[16].
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In the third code optimization step, systematic LDPC codes at the relay node are

optimized. The optimized irregular LDPC codes obtained in the first two steps are used

in the third step. The optimization objective is to find the optimal degree distributions

that minimize the ratio of the length of the relay codeword to the sum of the lengths of

two source codewords

λ3,3,1∑
i λ3,1,i +

∑
j λ3,2,j

. (3.41)

In this optimization problem, the feasible region is a space on λ3,1, λ3,2, λ3,3, ρ3,1 and

ρ3,2. To simplify this task, the original problem is divided into a sequence of optimization

problems on λ31, λ32, λ33 with fixed ρ31, ρ32.

The global optimization problem in the third optimization step is

min
λ3,1,λ3,2,λ3,3

λ3,3,1 (3.42)

s.t.
∑
i

λ3,1,i +
∑
j

λ3,2,j + λ3,3,1 = 1 (3.43)

0 ≤ λ3,1,i, λ3,2,j, λ3,3,1 ≤ 1 (3.44)∑
i

iλ3,1,i −

(∑
j

jρ3,1,j

)
λ3,3,1 = 0 (3.45)

∑
i

iλ3,2,i −

(∑
j

jρ3,2,j

)
λ3,3,1 = 0 (3.46)∑

j

j(el+1
3,1,j − el3,1)λ3,1,j < 0, l = 1, · · · , L1 (3.47)∑

j

j(el+1
3,2,j − el3,2)λ3,2,j < 0, l = 1, · · · , L2, (3.48)

where L1 and L2 are the total numbers of decoding iterations, el3,i,j is the probability of

error on upper-degree-j edges of Group i variable nodes in the l-th decoding iteration,

and el3,i is the probability-of-error mixture on Group i check node sockets in the l-th

decoding iteration. Note that the probability of error is calculated during discretized

density evolution by
∑

a≤0 P (a), where P is the probability mass function of messages.
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The probability-of-error mixture el3,i is calculated from the probability mass function of

the message mixture at inputs of check nodes.

With constraint (3.43), (3.41) becomes (3.42). Constraint (3.43) is the condition that

the sum of the probabilities is 1. Constraint (3.44) is the condition that a probability is

upper bounded by 1 and lower bounded by 0.

Constraint (3.45) comes from∑
i

niλ3,1,i =
∑
j

n3jρ3,1,j. (3.49)

The left-hand side (LHS) of (3.49) is the total number of upper edges connected to Group

1 variable nodes, where n is the total number of all three groups of variable nodes. In

addition, from the upper layer check node perspective, the total number of upper edges

connected to Group 1 variable nodes is the right-hand side (RHS) of (3.49), where n3 is

the total number of upper layer check nodes. The LHS and the RHS should be equal, and

this condition becomes constraint (3.45) due to λ3,3,1 = n3

n
. Constraint (3.46) is similar to

(3.45), but it applies to Group 2 variable nodes.

Constraint (3.47) comes from∑
i

el+1
3,1,i

niλ3,1,i∑
j njλ3,1,j

< el3,1. (3.50)

The LHS and the RHS of (3.50) are mixtures of probabilities of error of input messages

at upper layer check nodes in the (l + 1)-th and l-th decoding iteration, respectively.

(3.47) is a sequence of constraints on the decoding rule; that is, the probability of error is

monotonically decreased during iterative decoding. Constraint (3.48) is similar to (3.47) ,

but it applies to Group 2 variable nodes.

Since the probability of error is a non-linear function of the degree distribution, con-

straints (3.47) and (3.48) are non-linear. However, if the probabilities of error are treated

as constants, the non-linear optimization problem becomes a linear optimization problem.

Since the probabilities of error are treated as constants, codes from linear programming

might not be decodable. In this case, discretized density evolution can be used to verify
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whether codes can be decoded. If they can, their degree distribution becomes the current

best degree distribution. During the discretized density evolution, the probability of er-

ror in each decoding iteration can be calculated and then used in the next optimization

iteration. If codes cannot be decoded, the feasible region needs to be shrunk by reducing

the value of the RHS of (3.47) and (3.48), denoted as µ, towards −∞. When the feasible

region is shrunk, the ratio (3.41) becomes larger. Hence decoding should be easier. As

the value µ is reduced, the problem could be infeasible at some point. In other words, no

degree distribution satisfies all constraints from (3.43) to (3.48). In such a case, we modify

the iterative linear programming algorithm proposed in [16] by reducing L1 and L2. Since

fewer constraints are applied, the feasible region is enlarged. Note that the probabilities

of error in (3.47) and (3.48) come from the preceding optimization iteration, and are pro-

vided as hints on the boundary of the feasible region in the next optimization iteration.

The optimal degree distribution could be inside or outside of the feasible region.

The iterative linear programming algorithm is shown in Algorithm 1. In the algorithm,

we adjust the µ between a and b, where a < b ≤ 0. When µ is close to b, codes cannot

be decoded since the feasible region is large and λ3,3,1 is small. When µ is close to a,

the problem is infeasible, and so L1 and L2 are reduced. Otherwise, the optimized degree

distribution is verified by discretized density evolution. If codes can be decoded, µ moves

towards a higher value u, and λ3,3,1 reduces. If codes cannot be decoded, µ moves towards

a lower value l so that λ3,3,1 becomes higher.
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Algorithm 1 Iterative linear programming

l← a, u← b, µ← l+u
2

while i ≤ I do

i← i+ 1

λ← optimization(µ)

if λ is INFEASIBLE then

if L1 = 0 and L2 = 0 then

l← µ, µ← µ+u
2

else

L1 ← L1 − 1 or L2 ← L2 − 1

end if

else

if densityEvolution(λ) = DECODED then

l← µ, µ← µ+u
2

else

u← µ, µ← µ+l
2

end if

end if

end while
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To initialize the above optimization problem, the following linear programming

maxλ3,3,1 (3.51)

s.t.
∑
i

λ3,1,i +
∑
j

λ3,2,j + λ3,3,1 = 1 (3.52)

0 ≤ λ3,1,i, λ3,2,j, λ3,3,1 ≤ 1 (3.53)∑
i

iλ3,1,i −

(∑
j

jρ3,1,j

)
λ3,3,1 = 0 (3.54)

∑
i

iλ3,2,i −

(∑
j

jρ3,2,j

)
λ3,3,1 = 0 (3.55)

is used to find the initial degree distribution and the corresponding probabilities of error.

Since λ3,3,1 is maximized, the code rate is small, which ensures that codes can be decoded.

3.7 Simulation results

In this section, two optimized degree distributions for irregular LDPC codes at terminal

nodes and an optimized degree distribution for systematic LDPC codes at the relay node

are obtained when a half-duplex three-phase two-way relay channel is given. Codes sampled

from the optimized degree distributions are simulated. We show that good codes can be

found with our proposed three-step optimization. The obtained optimized codes are 26%

longer than the theoretic one. In addition, during simulation, the required SNR for a

finite-length code converges fast to that for cycle-free infinite-length codes.

The first step optimizes irregular LDPC codes for terminal node 1, where a k1-bit source

message is encoded into an n1-bit codeword. The code rate is k1
n1

. The code optimization

problem is to maximize the code rate when channel parameter σ3,1 is given. Codes with

rate 0.3277 are found when σ3,1 is 1.295 and the check node degree is 8. Note that the

capacity rate is 1
3
, which can be determined by the equation of the capacity of BIAWGN
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channels

CBIAWGN(σ) = −
∫
φσ(y) log2 φσ(y)dy − 1

2
log2(2πeσ2) (3.56)

where

φσ(y) =
1√

8πσ2

(
e−

(y+1)2

2σ2 + e−
(y−1)2

2σ2

)
(3.57)

is the probability density function of received signal Y . The optimized variable node degree

distribution is shown in Table 3.1.

Table 3.1: Variable node degree distribution for codes with rate 0.3277

i λ1,i i λ1,i

2 0.5277 3 0.2903

6 0.0022 7 0.1392

21 0.0199 22 0.0003

100 0.0204

In the second optimization step, for the link between terminal node 2 and the relay

node, codes with rate 0.4852 are found when σ3,2 is 0.979 and the check node degree is 8.

The corresponding capacity rate is 1
2
. The optimized variable node degree distribution is

shown in Table 3.2.

Two codes, Code A and Code B with the length of 105 bits, are randomly sampled from

the above two degree distributions. Code A (B) is sampled from the degree distribution

for irregular LDPC codes at node 1 (node 2). Simulation results are shown in Figure 3.10

and Figure 3.11, labeled as Code A, no relay, n = 105 and Code B, no relay, n = 105,

respectively. The waterfall curve given in the figure can be considered as the case when

no relay node exists. Each code is simulated with multiple SNRs. The maximum number

of decoding iterations is 200. The corresponding bit error rate (BER) is presented in the

logarithmic Y-axis. The equivalent SNRs of σ3,1 = 1.295 and σ3,2 = 0.979 are represented

by the vertical lines.
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Table 3.2: Variable node degree distribution for codes with rate 0.4852

i λ2,i i λ2,i

2 0.4928 3 0.2889

5 0.0011 6 0.0517

7 0.1050 8 0.0010

9 0.0007 10 0.0091

11 0.0005 12 0.0004

13 0.0003 14 0.0002

15 0.0001 16 0.0001

22 0.0183 23 0.0275

24 0.0001 25 0.0021

In the third optimization step, in order to optimize the degree distribution of systematic

LDPC codes at the relay node, channel parameters σ1,2, σ1,3, σ2,1, σ2,3 are given. We

consider the case when σ2,1 = σ2,3 = 1.9483 and σ1,2 = σ1,3 = 1.5490. The degree of upper

layer check nodes is g3,1 = g3,2 = 3. By iterative linear programming, the optimized λ3,3,1

is 0.3867, and the optimized λ3,1, λ3,2 are shown in Table 3.3 and 3.4. Note that for the

given σ1,2, σ1,3, σ2,1, σ2,3, the lower bound of λ3,3,1 is 1
3
.

Table 3.3: Variable node degree distribution λ3,1

i λ3,1,i i λ3,1,i

0 0.2238 14 0.0829

Irregular LDPC codes with the lengths of 103, 104 and 105 bits and systematic LDPC

codes with the relay codeword lengths of 1.26 × 103, 1.26 × 104 and 1.26 × 105 bits are

randomly sampled from the above degree distributions. Simulation results for decoding

Code A and Code B at destination nodes are shown in Figure 3.10 and Figure 3.11,

respectively. The maximum number of decoding iterations is 500. In the figure, the SNRs

are defined as 1
σ2
1,3

and 1
σ2
2,3

for the two decoders at two destination nodes. The BER is
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Figure 3.10: Simulation results when decoding code A at terminal node 2

defined as the ratio of the total number of erroneous bits to the total number of bits in

Group i variable nodes for i = 1, 2. In this sense, BERs are evaluated at two destination

nodes separately. The equivalent SNRs of σ2,1 = σ2,3 = 1.9483 and σ1,2 = σ1,3 = 1.5490 are

represented by vertical dashed lines. As we can see, with the help of the relay node, the

required SNRs are reduced from 0.2 dB to -3.8 dB and -2.2 dB to -5.7 dB, respectively. In

Figure 3.10 and Figure 3.11, we also simulate the network coding case where two source

codewords are added in GF(2) at the relay node. At the BERs of 10−4, the required SNR

of the network coding case is around 1.5 dB higher than that of our proposed LDPC code
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Figure 3.11: Simulation results when decoding code B at terminal node 1

construction.

In density evolution, it is assumed that incoming messages of variable nodes and check

nodes are independent. This assumption implies that the bipartite graph has no cycles.

However, cycles almost always exist. A natural question is whether the actual density is

close to the density in density evolution, especially when deviation is accumulated during

the iterative decoding. This question can be empirically answered by Figure 3.10 and

Figure 3.11. As we can see, when the length of codewords grows from 103 to 105, the

waterfall curve moves closer to the vertical dashed lines, which shows that the required
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Table 3.4: Variable node degree distribution λ3,2

i λ3,2,i i λ3,2,i

0 0.1482 1 0.0148

2 0.0131 3 0.0121

4 0.0113 5 0.0109

6 0.0107 7 0.0106

8 0.0107 9 0.0108

10 0.0106 11 0.0094

12 0.0059 13 0.0036

14 0.0239

SNR for a finite-length code converges fast to that for cycle-free infinite-length codes.

For the given optimized degree distributions, the evolution of the BER under discretized

density evolution is shown in Figure 3.12. P1 = P2 = P3 = 1, σ1,2 = σ1,3 = 1.5490 and

σ2,1 = σ2,3 = 1.9483 are used. The two BER curves are monotonically decreasing during

iterative decoding. The required decoding iterations at two destination nodes are close to

100 and 300, respectively. The decrease of the BER as a function of the current BER is

shown in Figure 3.13. The critical point [11] is where the decrease of the BER is a local

minimum. As shown in Figure 3.13, the critical points of two codes at two destination

nodes are close to 0.12 and 0.19, respectively.

3.8 Conclusion

In half-duplex three-phase two-way relay channels, codewords are broadcast and signals are

received from the source node and the relay node. In this work, we constructed systematic

LDPC codes at the relay node to encode two source codewords. At the destination node,

signals from the source node and the relay node are used for joint decoding. We designed the

codes with discretized density evolution and iterative linear programing, and demonstrated
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Figure 3.12: Evolution of the bit error rate during iterative decoding

that good codes can be found within our framework. For future work, structured codes,

short codes, codes for high spectral density and codes on GF(q) can be studied. In addition,

this work can be extended to fading channels and wireless relay networks.
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Chapter 4

Low-density Parity-check Codes for

Half-duplex Three-way Relay

Channels

4.1 Introduction

In this chapter, we study practical coding schemes for wireless relay networks with one step

forward. To be specific, the study of low-density parity-check (LDPC) codes is extended

from half-duplex three-phase two-way relay channels to half-duplex three-way relay chan-

nels. In three-way relay channels, each of the three nodes broadcasts its messages to the

other two nodes. In section 4.2, an achievable rate region of half-duplex three-way relay

channels is proved. In the proof, the region is divided into seven sub-regions. For each

sub-region, a random code is constructed. A node may relay one or two messages, or may

not relay any messages. Inspired by random coding, LDPC codes are constructed for each

sub-region in section 4.3. The code constructions can be generalized into two categories.

In the first category, relay bits are generated only from received codewords. In the second

category, bits are generated from both a source codeword and received codewords. Finally,
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section 4.4 concludes the chapter.

4.2 An achievable rate region of half-duplex three-

way relay channels

In this section, an achievable rate region of half-duplex three-way relay channels is proved.

Note that an achievable rate region for full-duplex three-way relay channels was given in

[20].

Without loss of generality, it is assumed that node i broadcasts signals in phase i for

i = 1, 2, 3. In each phase, a node sends a message and helps to relay messages when

necessary.

A three-way relay channel consists of source input alphabet sets X1, X2, X3, chan-

nel output alphabet sets Y1, Y2, Y3 and a distribution p(y1, y2, y3|x1, x2, x3). Consid-

ering time division, distributions during phase 1, phase 2 and phase 3 are p(y2, y3|x1),

p(y1, y3|x2) and p(y1, y2|x3), respectively. Assume the lengths of codewords in three phases

are n1, n2 and n3 respectively, and n =
∑3

i=1 ni. Set α = n1

n
, β = n2

n
and γ =

n3

n
. A ((2nR1 , 2nR2 , 2nR3), n1, n2, n3) code for the half-duplex three-way relay channel con-

sists of three sets of integers W1 = {1, 2, · · · , 2nR1}, W2 = {1, 2, · · · , 2nR2} and W3 =

{1, 2, · · · , 2nR3}.

Theorem 3. For discrete memoryless half-duplex three-way relay channels, all rate tuples

(R1, R2, R3) satisfying

R1 < max (αI(X1;Y2), αI(X1;Y3)), (4.1)

R2 < max (βI(X2;Y3), βI(X2;Y1)), (4.2)

R3 < max (γI(X3;Y1), γI(X3;Y2)) (4.3)
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and

R1 +R2 < αI(X1;Y3) + βI(X2;Y3), (4.4)

R2 +R3 < βI(X2;Y1) + γI(X3;Y1), (4.5)

R3 +R1 < γI(X3;Y2) + αI(X1;Y2) (4.6)

for some p(x1)p(x2)p(x3) are achievable.

Proof. In order to prove the theorem, the achievable rate region is divided into smaller

sub-regions. For each sub-region, the rate tuple is achievable by employing a coding con-

struction. By symmetry, only seven cases need to be considered.

Case 1: (R1, R2, R3) satisfies

R1 < min (αI(X1;Y2), αI(X1;Y3)), (4.7)

R2 < min (βI(X2;Y3), βI(X2;Y1)), (4.8)

R3 < min (γI(X3;Y1), γI(X3;Y2)). (4.9)

In this case, each node i simply sends its own message wi. Node j can decode wi for

j 6= i.

Codebook generation: Generate 2nR1 codewords x1 = xn1
1 according to

∏n1

i=1 p(x1) and

index them as x1(w1), w1 ∈ {1, 2, . . . , 2nR1}. Generate 2nR2 codewords x2 = xn2
2 according

to
∏n2

i=1 p(x2) and index them as x2(w2), w2 ∈ {1, 2, . . . , 2nR2}. Generate 2nR3 codewords

x3 = xn3
3 according to

∏n3

i=1 p(x3) and index them as x3(w3), w3 ∈ {1, 2, . . . , 2nR3}.

Encoding: In phase 1, to send index w1, node 1 sends x1(w1). In phase 2, to send w2,

node 2 sends x2(w2). In phase 3, to send w3, node 3 sends x3(w3).

Decoding: At the end of phase 1, node 2 decodes w1 by finding the unique ŵ1 that

satisfies the jointly typicality check (x1(ŵ1),y2,1) ∈ A
(n1)
ε (X1, Y2) where A

(n1)
ε (X1, Y2) is

the set of jointly typical sequences of X1 and Y2. If there is no such or more than one

such ŵ1, an error is declared. Node 3 decodes w1 by finding the unique ŵ1 that satisfies
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(x1(ŵ1),y3,1) ∈ A(n1)
ε (X1, Y3) . If there is no such or more than one such w1, an error is

declared. Similarly, the joint typicality decoding is used at the end of phase 2 and phase

3.

Analysis of the probability of error: When node 1 sends, the probability that indepen-

dent x1 and y2,1 are jointly typical is upper bounded by 2−n(I(X1;Y2)−3ε). There are totally

2nR1−1 such x1. With the union bound, the probability of error at node 2 is upper bounded

by (2nR1 − 1)2−n1(I(X1;Y2)−3ε), which approaches zero when n1 → ∞ and R1 < αI(X1;Y2)

(from nR1 − n1I(X1;Y2) < 0 and α = n1

n
). Similarly, we need R1 < αI(X1;Y3) for node

3 to decode x1, R2 < βI(X2;Y1) for node 1 to decode x2, R2 < βI(X2;Y3) for node 3 to

decode x2, R3 < γI(X3;Y1) for node 1 to decode x3 and R3 < γI(X3;Y2) for node 2 to

decode x3.

Case 2: (R1, R2, R3) satisfies

αI(X1;Y2) ≤ R1 < αI(X1;Y3), (4.10)

R2 < min (βI(X2;Y3), βI(X2;Y1)), (4.11)

R3 < min (γI(X3;Y1), γI(X3;Y2)). (4.12)

In this case, node 3 relays messages of node 1, and node 1 and node 2 do not relay

messages.

Codebook generation: Generate 2nR1 codewords x1 = xn1
1 according to

∏n1

i=1 p(x1) and

index them as x1(w1), w1 ∈ {1, 2, . . . , 2nR1}. Generates 2nR2 codewords x2 = xn2
2 according

to
∏n2

i=1 p(x2) and index them as x2(w2), w2 ∈ {1, 2, . . . , 2nR2}. Generate 2n(R3+R1) code-

words x3 = xn3
3 according to

∏n3

i=1 p(x3) and index them as x3(w3, w1), w3 ∈ {1, 2, . . . , 2nR3},
w1 ∈ {1, 2, . . . , 2nR1}.

Encoding: In phase 1, to send w1, node 1 sends x1(w1). In phase 2, to send index w2,

node 2 sends x2(w2). In phase 3, node 3 sends x3(w3, ŵ1) after decoding w1.

Decoding: At the end of phase 1, node 3 decodes w1 by finding the unique ŵ1 that

satisfies (x1(ŵ1),y3,1) ∈ A
(n1)
ε (X1;Y3). If there is no such or more than one such ŵ1,
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an error is declared. At the end of phase 2, node 1 decodes w2 by finding the unique

ŵ2 that satisfies (x2(ŵ2),y1,2) ∈ A
(n2)
ε (X2;Y1). If there is no such or more than one

such ŵ2, an error is declared. Node 3 decodes w2 by finding the unique ŵ2 that satisfies

(x2(ŵ2),y3,2) ∈ A
(n2)
ε (X2;Y3). If there is no such or more than one such ŵ2, an error is

declared. At the end of phase 3, node 1 decodes w3 by finding the unique ŵ3 that satisfies

(x3(ŵ3, w1),y1,3) ∈ A(n3)
ε (X3;Y1). If there is no such or more than one such ŵ3, an error

is declared. Node 2 decodes w3 and w1 by finding the unique (ŵ3, ŵ1) pair that satisfies

(x3(ŵ3, ŵ1),y2,3) ∈ A(n3)
ε (X3;Y2) and (x1(ŵ1),y2,1) ∈ A(n1)

ε (X1;Y2). If there is no such or

more than one such (ŵ3, ŵ1) pair, an error is declared.

Analysis of the probability of error: First, R2 < βI(X2;Y1) is needed for node 1 to

decode x2, R2 < βI(X2;Y3) is needed for node 3 to decode x2 and R1 < αI(X1;Y3) is

needed for node 3 to decode x1. When node 3 sends x3(w3, ŵ1), the probability that

independent x3 and y1,3 are jointly typical is upper bounded by 2−n3(I(X3;Y1)−3ε). There are

totally 2nR3 − 1 such x3 when node 1 knows w1. With the union bound, the probability

of error at node 1 is upper bounded by (2nR3 − 1)2−n3(I(X3;Y1)−3ε), which approaches zero

when n3 →∞ and R3 < γI(X3;Y1) (from nR3−n3I(X3;Y1) < 0 and γ = n3

n
). When node

3 sends, the probability that independent x3 and y2,3 are jointly typical is upper bounded

by 2−n3(I(X3;Y2)−3ε) and the probability that independent x1 and y2,1 are jointly typical is

upper bounded by 2−n1(I(X1;Y2)−3ε). There are totally (2nR3 − 1)(2nR1 − 1) such (ŵ3, ŵ1)

pairs that ŵ3 6= w3 and ŵ1 6= w1. With the union bound, the probability of the event

that any independent x1 and y2,1 are jointly typical and any independent x3 and y2,3 are

jointly typical is upper bounded by (2nR3−1)(2nR1−1)2−n3(I(X3;Y2)−3ε)2−n1(I(X1;Y2)−3ε), which

approaches zero when n3 →∞, n1 →∞ andR3+R1 < γI(X3;Y2)+αI(X1;Y2) (from nR3+

nR1 − n3I(X3;Y2)− n1I(X1;Y2) < 0, γ = n3

n
and α = n1

n
). When ŵ1 is correct, there are

totally 2nR3−1 independent x3(ŵ3, w1). The probability of the event that any independent

x3 and y2,3 are jointly typical at node 2 is upper bounded by (2nR3 − 1)2−n3(I(X3;Y2)−3ε),

which approaches zero when n3 → ∞ and R3 < γI(X3;Y2) (from nR3 − n3I(X3;Y2) < 0

and γ = n3

n
).
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Case 3: (R1, R2, R3) satisfies

αI(X1;Y3) ≤ R1 < αI(X1;Y2), (4.13)

βI(X2;Y1) ≤ R2 < βI(X2;Y3), (4.14)

R3 < min (γI(X3;Y1), γI(X3;Y2)). (4.15)

In case 3, node 2 relays messages of node 1, node 3 relays messages of node 2, and node

1 does not relay messages.

Codebook generation: Generate 2nR1 codewords x1 = xn1
1 according to

∏n1

i=1 p(x1)

and index them as x1(w1), w1 ∈ {1, 2, . . . , 2nR1}. Generate 2n(R1+R2) codewords x2 =

xn2
2 according to

∏n2

i=1 p(x2) and index them as x2(w1, w2), w1 ∈ {1, 2, . . . , 2nR1}, w2 ∈
{1, 2, . . . , 2nR2}. Generate 2n(R2+R3) codewords x3 = xn3

3 according to
∏n3

i=1 p(x3) and

index them as x3(w2, w3), w2 ∈ {1, 2, . . . , 2nR2}, w3 ∈ {1, 2, . . . , 2nR3}.

Encoding: In phase 1, to send index w1, node 1 sends x1(w1). In phase 2, node 2 sends

x2(ŵ1, w2) after decoding w1. In phase 3, node 3 sends x3(ŵ2, w3) after decoding w2.

Decoding: At the end of phase 1, node 2 decodes w1 by finding the unique ŵ1 that

satisfies (x1(ŵ1),y2,1) ∈ A(n1)
ε (X1;Y2). If there is no such or more than one such ŵ1, an error

is declared. At the end of phase 2, node 3 decodes w1 and w2 by finding the unique (ŵ1, ŵ2)

pair that satisfies (x2(ŵ1, ŵ2),y3,2) ∈ A
(n2)
ε (X2;Y3) and (x1(ŵ1),y3,1) ∈ A

(n1)
ε (X1;Y3). If

there is no such or more than one such (ŵ1,ŵ2) pair, an error is declared. At the end

of phase 3, node 2 decodes w3 by finding the unique ŵ3 that satisfies (x3(w2, ŵ3),y2,3) ∈
A

(n3)
ε (X3;Y2). If there is no such or more than one such ŵ3, an error is declared. Node

1 decodes w2 and w3 by finding the unique (ŵ2, ŵ3) pair that satisfies (x2(w1, ŵ2),y1,2) ∈
A

(n2)
ε (X2;Y1) and (x3(ŵ2, ŵ3),y1,3) ∈ A(n3)

ε (X3;Y1). If there is no such or more than one

such (ŵ2,ŵ3) pair, an error is declared.

Analysis of the probability of error: First, R1 < αI(X1;Y2) is needed for node 2 to

decode x1. When node 2 sends, the probability of error for node 3 to decode the (ŵ1, ŵ2)

pair approaches zero when n1 → ∞, n2 → ∞, R1 + R2 < αI(X1;Y3) + βI(X2;Y3) and
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R2 < βI(X2;Y3). When node 3 sends x3(ŵ2, w3), the probability of error for node 2 to

decode w3 approaches zero when n3 →∞ and R3 < γI(X3;Y2). In addition, the probability

that independent x2 and y1,2 are jointly typical is upper bounded by 2−n2(I(X2;Y1)−3ε),

and the probability that independent x3 and y1,3 are jointly typical is upper bounded by

2−n3(I(X3;Y1)−3ε). There are totally (2nR2 − 1)(2nR3 − 1) such (ŵ2, ŵ3) pairs. With the union

bound, the probability of the event that any independent x2 and y1,2 are jointly typical

and independent x3 and y1,3 are jointly typical is upper bounded by (2nR2 − 1)(2nR3 −
1)2−n2(I(X2;Y1)−3ε)2−n3(I(X3;Y1)−3ε), which approaches zero when n2 → ∞, n3 → ∞ and

R2 + R3 < βI(X2;Y1) + γI(X3;Y1) (from nR2 + nR3 − n2I(X2;Y1) − n3I(X3;Y1) < 0,

β = n2

n
and γ = n3

n
). When ŵ2 is correct, there are totally 2nR3 − 1 independent w3. The

probability of the event that any independent x3 and y1,3 are jointly typical at node 1 is

(2nR3−1)2−n3(I(X3;Y1)−3ε), which approaches zero when n3 →∞ and R3 < γI(X3;Y1) (from

nR3 − n3I(X3;Y1) < 0 and γ = n3

n
).

Case 4: (R1, R2, R3) satisfies

αI(X1;Y2) ≤ R1 < αI(X1;Y3), (4.16)

βI(X2;Y3) > R2 ≥ βI(X2;Y1), (4.17)

R3 < min (γI(X3;Y1), γI(X3;Y2)). (4.18)

In this case, node 3 relays messages of both node 1 and node 2, and node 1 and node

2 do not relay messages.

Codebook generation: Generate 2nR1 codewords x1 = xn1
1 according to

∏n1

i=1 p(x1) and

index them as x1(w1), w1 ∈ {1, 2, . . . , 2nR1}. Generate 2nR2 codewords x2 = xn2
2 according

to
∏n2

i=1 p(x2) and index them as x2(w2), w2 ∈ {1, 2, . . . , 2nR2}. Generate 2n(R1+R2+R3)

codewords x3 = xn3
3 according to

∏n3

i=1 p(x3) and index them as x3(w3, w1, w2), w3 ∈
{1, 2, . . . , 2nR3}, w1 ∈ {1, 2, . . . , 2nR1} and w2 ∈ {1, 2, . . . , 2nR2}.

Encoding: In phase 1, to send index w1, node 1 sends x1(w1). In phase 2, to send index

w2, node 2 sends x2(w2). In phase 3, node 3 sends x3(w3, ŵ1, ŵ2) after decoding w1 and

w2.
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Decoding: At the end of phase 1, node 3 decodes w1 by finding the unique ŵ1 that

satisfies (x1(ŵ1),y3,1) ∈ A(n1)
ε (X1, Y3). If there is no such or more than one such ŵ1, an

error is declared. At the end of phase 2, node 3 decodes w2 by finding the unique ŵ2

that satisfies (x2(ŵ2),y3,2) ∈ A(n2)
ε (X2, Y3). If there is no such or more than one such ŵ2,

an error is declared. At the end of phase 3, node 1 decodes w3 and w2 by finding the

unique pair (ŵ3, ŵ2) that satisfies (x3(ŵ3, w1, ŵ2),y1,3) ∈ A(n3)
ε (X3, Y1) and (x2(ŵ2),y1,2) ∈

A
(n2)
ε (X2, Y1). If there is no such or more than one such pair (ŵ3, ŵ2), an error is declared.

At the end of phase 3, node 2 decodes w3 and w1 by finding the unique pair (ŵ3, ŵ1) that

satisfies (x3(ŵ3, ŵ1, w2),y2,3) ∈ A(n3)
ε (X3, Y2) and (x1(ŵ1),y2,1) ∈ A(n1)

ε (X1, Y2). If there is

no such or more than one such pair (ŵ3, ŵ1), an error is declared.

Analysis of the probability of error: First, R1 < αI(X1;Y3) is needed for node 3 to de-

code x1 and R2 < βI(X2;Y3) for node 3 to decode x2. When node 3 sends x3(w3, ŵ1, ŵ2),

the probability that (x3(ŵ3, w1, ŵ2),y1,3) ∈ A
(n3)
ε (X3, Y1) when ŵ3 6= w3 and ŵ2 6= w2

at node 1 is upper bounded by 2−n3(I(X3;Y1)−3ε), and the probability that (x2(ŵ2),y1,2) ∈
A

(n2)
ε (X2, Y1) is upper bounded by 2−n2(I(X2;Y1)−3ε). There are totally (2nR2 − 1)(2nR3 − 1)

such (ŵ3, ŵ2) pairs. With the union bound, the probability of the event that any indepen-

dent x3 and y1,3 are jointly typical and any independent x2 and y1,2 are jointly typical at

node 1 is (2nR2 − 1)(2nR3 − 1)2−n3(I(X3;Y1)−3ε)2−n2(I(X2;Y1)−3ε), which approaches zero when

n2 →∞, n3 →∞ and R2 +R3 < γI(X3;Y1)+βI(X2;Y1) (from nR2 +nR3−n3I(X3;Y1)−
n2I(X2;Y1) < 0, γ = n3

n
and β = n2

n
). When ŵ2 is correct and ŵ3 is not correct, there are

totally 2nR3−1 independent ŵ3. The probability that (x3(ŵ3, w1, w2),y1,3) ∈ A(n3)
ε (X3, Y1)

when ŵ3 6= w3 and ŵ2 = w2 at node 1 is upper bounded by 2−n3(I(X3;Y1)−3ε). With the

union bound, the probability of the event that any independent x3 and y1,3 are jointly

typical at node 1 is (2nR3 − 1)2−n3(I(X3;Y1)−3ε), which approaches zero when n3 → ∞
and R3 < γI(X3;Y1) (from nR3 − n3I(X3;Y1) < 0 and γ = n3

n
). By symmetry, when

R1 + R3 < γI(X3;Y2) + αI(X1;Y2) and R3 < γI(X3;Y2), node 2 can decode the (w3, w1)

pair with the probability of error approaching zero.
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Case 5: (R1, R2, R3) satisfies

αI(X1;Y2) > R1 ≥ αI(X1;Y3), (4.19)

βI(X2;Y3) ≤ R2 < βI(X2;Y1), (4.20)

R3 < min (γI(X3;Y1), γI(X3;Y2)). (4.21)

This case is impossible because R1 +R2 ≥ αI(X1;Y3) +βI(X2;Y3), which is conflict to

(4.4).

Case 6: (R1, R2, R3) satisfies

αI(X1;Y3) ≤ R1 < αI(X1;Y2), (4.22)

βI(X2;Y1) ≤ R2 < βI(X2;Y3), (4.23)

γI(X3;Y2) ≤ R3 < γI(X3;Y1). (4.24)

In this case, node 1 relays messages of node 3, node 2 relays messages of node 1 and

node 3 relays messages of node 2.

Codebook generation: Generate 2n(R1+R3) codewords x1 = xn1
1 according to

∏n1

i=1 p(x1)

and index them as x1(w1, w3), w1 ∈ {1, 2, . . . , 2nR1}, w3 ∈ {1, 2, . . . , 2nR3}. Generate

2n(R1+R2) codewords x2 = xn2
2 according to

∏n2

i=1 p(x2) and index them as x2(w1, w2), w1 ∈
{1, 2, . . . , 2nR1}, w2 ∈ {1, 2, . . . , 2nR2}. Generate 2n(R2+R3) codewords x3 = xn3

3 according

to
∏n3

i=1 p(x3) and index them as x3(w2, w3), w2 ∈ {1, 2, . . . , 2nR2}, w3 ∈ {1, 2, . . . , 2nR3}.

Encoding: In phase 1, node 1 sends x1(w1, ŵ
′
3) where ŵ′3 is the last decoded w3. In

phase 2, node 2 sends x2(ŵ1, w2). In phase 3, node 3 sends x3(ŵ2, w3).

Decoding: At the end of phase 1, node 2 decodes w1 and w′3 by finding the unique

(ŵ1, ŵ
′
3) pair that satisfies (x1(ŵ1, ŵ

′
3),y2,1) ∈ A(n1)

ε (X1, Y2) and (x3(w′2, ŵ
′
3),y′2,3) ∈ A(n3)

ε

(X3, Y2) where w′2 is the last w2 and y′2,3 is the last received y2,3. If there is no such or

more than one such pair (ŵ1, ŵ
′
3), an error is declared. At the end of phase 2, node 3

decodes w1 and w2 by finding the unique (ŵ1, ŵ2) pair that satisfies (x1(ŵ1, w
′
3),y3,1) ∈
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A
(n1)
ε (X1, Y3) and (x2(ŵ1, ŵ2),y3,2) ∈ A(n2)

ε (X2, Y3). If there is no such or more than one

such pair (ŵ1, ŵ2), an error is declared. At the end of phase 3, node 1 decodes w2 and

w3 by finding the unique (ŵ2, ŵ3) pair that satisfies (x2(w1, ŵ2),y1,2) ∈ A(n2)
ε (X2, Y1) and

(x3(ŵ2, ŵ3),y1,3) ∈ A(n3)
ε (X3, Y1). If there is no such or more than one such pair (ŵ2, ŵ3),

an error is declared.

Analysis of the probability of error: When node 1 sends, node 2 can decode w1 and w′3

if R1 + R3 < αI(X1;Y2) + γI(X3;Y2) and R1 < αI(X1;Y2). When node 2 sends, node 3

can decode w1 and w2 if R1 + R2 < αI(X1;Y3) + βI(X2;Y3) and R2 < βI(X2;Y3). When

node 3 sends, node 1 can decode w2 and w3 if R2 + R3 < βI(X2;Y1) + γI(X3;Y1) and

R3 < γI(X3;Y1).

Case 7: (R1, R2, R3) satisfies

αI(X1;Y2) ≤ R1 < αI(X1;Y3), (4.25)

βI(X2;Y3) ≤ R2 < βI(X2;Y1), (4.26)

γI(X3;Y1) > R3 ≥ γI(X3;Y2). (4.27)

This case is impossible because R1 +R3 ≥ αI(X1;Y2) + γI(X3;Y2), which is conflict to

(4.6).

Gaussian half-duplex three-way relay channels can be modeled as follows. In phase 1,

node 1 broadcasts messages to node 2 and node 3. The received signals at node 2 and node

3 are Y2,1 = X1 + Z2,1 and Y3,1 = X1 + Z3,1 respectively where Yi,j is the received signal

at node i in phase j, Zi,j is a Gaussian distributed random variable with mean zero and

variance σ2
i,j, and σ2

i,j is the noise power for the link from node j to node i. In phase 2, node

2 broadcasts messages to node 1 and node 3. The received signals at node 1 and node 3 are

Y1,2 = X2 +Z1,2 and Y3,2 = X2 +Z3,2, respectively. In phase 3, node 3 broadcasts message

to node 1 and node 2. The received signals at node 1 and node 2 are Y1,3 = X3 + Z1,3

and Y2,3 = X3 + Z2,3, respectively. The power constraint of signal X1 = (X1,1, · · · , X1,n1)

is 1
n1

∑n1

i=1X
2
1,i ≤ P1. Similarly, the power constraints of X2 and X3 are 1

n2

∑n2

i=1X
2
2,i ≤ P2

and 1
n3

∑n3

i=1X
2
3,i ≤ P3.
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Theorem 4. For Gaussian half-duplex three-way relay channels, all rate tuples (R1, R2, R3)

satisfying

R1 < max

(
1

2
α log

(
1 +

P1

N2,1

)
,
1

2
α log

(
1 +

P1

N3,1

))
, (4.28)

R2 < max

(
1

2
β log

(
1 +

P2

N3,2

)
,
1

2
β log

(
1 +

P2

N1,2

))
, (4.29)

R3 < max

(
1

2
γ log

(
1 +

P3

N1,3

)
,
1

2
γ log

(
1 +

P3

N2,3

))
(4.30)

and

R1 +R2 <
1

2
α log

(
1 +

P1

N3,1

)
+

1

2
β log

(
1 +

P2

N3,2

)
, (4.31)

R2 +R3 <
1

2
β log

(
1 +

P2

N1,2

)
+

1

2
γ log

(
1 +

P3

N1,3

)
, (4.32)

R3 +R1 <
1

2
γ log

(
1 +

P3

N2,3

)
+

1

2
α log

(
1 +

P1

N2,1

)
(4.33)

are achievable where Ni,j = σ2
i,j is the noise power at the receiver of node i in phase j and

α + β + γ = 1.

4.3 Low-density parity-check code constructions for

half-duplex three-way relay channels

In Theorem 3, the achievable rate region of half-duplex three-way relay channels is divided

into multiple sub-regions. In each sub-region, a random code is constructed since a terminal

node may relay one message or two messages, or may not relay any messages. Inspired by

Theorem 3, LDPC codes can be constructed for each sub-region. The constructions can be

generalized into two categories. In both categories, the source codeword is first generated

from the source message by non-systematic LDPC codes. Next, in category 1, relay bits

are generated only from received codewords by systematic LDPC codes, and in category 2,

68



bits are generated from both the source codeword and received codewords by systematic

LDPC codes.

Category 1: In this category, relay bits are generated only from one or two received

codewords.

First, consider the case when a terminal node encodes a k1-bit source message into an

n1-bit codeword and helps to relay an n2-bit codeword. m3 relay bits are generated from

the n2-bit codeword by a systematic LDPC code. The terminal node sends the n1-bit

codeword and the m3 relay bits. The n2-bit codeword is not sent. The encoding graph is

shown in Figure 4.1.

... ...
n1

...
1 m1

...
m3

...
1 m3

1

2

1 2 n1-1

... ...
n2

...
1 m22

1 2 n2-1

Figure 4.1: Graph for disjointly encoding a source codeword and a received codeword at a

node

Next, consider the case when a terminal node helps to relay two codewords. The

encoding graph is shown in Figure 4.2. The m4 relay bits and the m5 relay bits are

generated from the n2-bit codeword and the n3-bit codeword by systematic LDPC codes.

The terminal node sends the n1-bit codeword, the m4 relay bits and the m5 relay bits. The

n2-bit codeword and the n3-bit codeword are not sent.

When a destination node decodes the n2-bit codeword with the help of the m3 relay

bits, the graph for joint decoding is shown in Figure 4.3. The n2 bits are received from

the source node. The m3 bits are received from the relay node and appended to the source

codeword for joint decoding.

Note that code constructions in category 1 can be extended to a general relay network
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... ...
n1

...
1 m1

...
m4

...
1 m4

1

2

1 2 n1-1

... ...
n2

...
1 m22

1 2 n2-1

...
m5

...
1 m5

1

... ...
n3

...
1 m32

1 2 n3-1

Figure 4.2: Graph for disjointly encoding a source codeword and two received codewords

at a node

...
m3

...
1 m3

1

... ...
n2

...
1 m22

1 2 n2-1

Figure 4.3: Graph for decoding when disjointly encoding a source codeword and a received

codeword at a node

where a terminal node can help to relay multiple messages by generating a sequence of

relay bits for each received codeword. In addition, if a codeword is helped by multiple relay

nodes, multiple sequences of relay bits can be simply appended to the source codeword for

joint decoding.

Category 2: In this category, relay bits are generated from both the source codeword

and received codewords. In the following, LDPC codes are constructed for each sub-region

in Theorem 3.

Case 1: In this case, the destination node decodes messages based on signals only from

the source node. Hence, any existing code constructions for point-to-point channels can

be used.

Case 2: In this case, node 3 relays messages of node 1, and node 1 and node 2 do not

relay messages.
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The encoding graph at node 3 is shown in Figure 4.4. Node 3 first encodes its own

k3-bit message into an n3-bit codeword. Next, additional m4 relay bits are generated from

the n3-bit codeword and the received n1-bit codeword of node 1. Node 3 sends the n3-bit

source codeword and the m4 relay bits. The n1-bit codeword is not sent.

......
1 n3

...
1 m32

2

......
1 n12

...

...
1 m42

Figure 4.4: Graph for jointly encoding a source codeword and a received codeword at a

node

When node 1 decodes messages of node 2, and node 3 decodes messages of node 1 and

node 2, signals only from the source node are used.

Node 2 jointly decodes messages of node 1 and node 3. The decoding graph is shown

in Figure 4.5. Node 2 receives the n3-bit codeword and the m4 relay bits from node 3, and

receives the n1-bit codeword from node 1.

Node 1 decodes the message of node 3 with the same graph in Figure 4.5. Node 1

receives the n3-bit codeword and the m4 relay bits from node 3. In addition, node 1 knows

its own n1-bit codeword, which is used for decoding as side information.

Case 3: In this case, node 2 relays messages of node 1, node 3 relays messages of node

2 and node 1 does not relay messages.
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......
1 n3

...
1 m32

2

......
1 n12

...

...
1 m42

...
1 m12

Figure 4.5: Graph for decoding when jointly encoding a source codeword and a received

codeword at a node

The encoding graph at node 2 and node 3 is shown in Figure 4.6. In the left part of

the figure, node 2 first encodes a k2-bit source message into an n2-bit codeword. Next,

additional m4 relay bits are generated from the n2-bit source codeword and the received

n1-bit codeword of node 1. Node 2 sends the n2-bit source codeword and the m4 relay

bits. The n1-bit codeword is not sent. Similarly, in the right part of the figure, node 3 first

encodes a k3-bit source message into an n3-bit codeword. Next, additional m5 relay bits

are generated from the n3-bit source codeword and the received n2-bit codeword of node

2. Node 3 sends the n3-bit source codeword and the m5 relay bits. The n2-bit codeword is

not sent.

Node 2 decodes messages of node 1 based on signals only from the source node. When

node 3 jointly decodes messages of node 1 and node 2 from signals of node 1 and node 2,

or when node 2 decodes messages of node 3 from signals of node 3 and its own codeword,

the decoding graph is similar to the graph in Figure 4.5.

Node 1 decodes messages of node 2 and node 3 after receiving signals from node 2 and
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1 n2
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1 m22

2
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1 n12
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1 m42
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...
1 m32

2

......
1 n22
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...
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Figure 4.6: Graph for jointly encoding a source codeword and a received codeword at two

nodes

node 3. The decoding graph is shown in Figure 4.7. Node 1 knows its own n1-bit codeword,

which is used for decoding as side information. The two sequences of n2 bits in the graph

are the same codeword. Thus they are combined in the decoding graph.

......
1

...
1 m22

2

......

...

...
1 m42

......
1 n3

...
1 m32

2

......
1 n22

...

...
1 m52

...
1 m12

n2 1 n12

Figure 4.7: Graph for decoding when jointly encoding a source codeword and a received

codeword at two nodes

Case 4: In this case, node 3 relays messages of both node 1 and node 2, and node 1

and node 2 do not relay messages.

The encoding graph at node 3 is shown in Figure 4.8. Node 3 first encodes a k3-bit

message into an n3-bit codeword. Next, additional m4 relay bits are generated based on
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the n3-bit source codeword, the n1-bit codeword of node 1 and the n2-bit codeword of node

2. Node 3 sends the n3-bit codeword and the m4 relay bits. The n1-bit codeword and the

n2-bit codeword are not sent.

......
1 n3

...
1 m32

2

......
1 2

...

...
1 m42

......
1 n22n1

Figure 4.8: Graph for jointly encoding a source codeword and two received codewords at

a node

Node 3 decodes messages of node 1 and node 2 based on signals only from the source.

When node 2 jointly decodes messages of node 1 and node 3, the decoding graph is

shown in Figure 4.9. Node 2 receives the n3-bit codeword and m4 relay bits from node 3

and receives the n1-bit codeword from node 1. In addition, node 2 knows its own n2-bit

codeword, which is used for decoding as side information.

When node 1 jointly decodes messages of node 2 and node 3, the same graph in Figure

4.9 is used. The only difference is that the n2-bit codeword is received from node 2 and its

own n1-bit codeword is used for decoding as side information.

Case 5: This case is impossible.

Case 6: In this case, node 1 relays messages of node 3, node 2 relays messages of node

1 and node 3 relays messages of node 2. The graphs for encoding and decoding at all three

nodes are similar to the graphs in Figure 4.6 and Figure 4.7, respectively.
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Figure 4.9: Graph for decoding when jointly encoding a source codeword and two received

codewords at a node

Case 7: This case is impossible.

4.4 Conclusion

In this chapter, the study of LDPC codes was extended from half-duplex three-phase two-

way relay channels to half-duplex three-way relay channels. An achievable rate region

of half-duplex three-way relay channels was first proved. Furthermore, LDPC codes were

constructed for each sub-region of the achievable rate region for half-duplex three-way relay

channels.
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Chapter 5

Relay Selection and Low-density

Parity-check Codes for the Broadcast

Problem in Wireless Relay Networks

5.1 Introduction

In this chapter, the single source broadcast problem in wireless relay networks is studied. In

these networks, signals are broadcast and all nodes in the network can receive the signals.

In [35], the optimal relay selection problem was studied to achieve the minimum energy.

However, this problem is NP-Complete [36] due to the wireless broadcast property. To be

specific, when a message is broadcast with higher power, the total energy could be reduced

since more nodes can be reached. The minimum-energy problem was extended to the case

where energies are accumulated over multiple transmission phases [37] and to the case

where multiple nodes cooperatively transmit the message by beamforming [38]. The dual

problem of [37] was recently studied in [39] as a minimum-delay problem with constraints

on the energy and the bandwidth.

In this chapter, the maximum-rate broadcast problem for a given discrete memoryless
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wireless relay network is studied. In this problem, signals are broadcast and messages

are decoded based on received signals from multiple transmission phases. The objective

is to find a relay route that can achieve the maximum rate. This problem starts with

the system model, followed by a theorem stating that a node can decode a message from

multiple blocks of received signals even if the message cannot be decoded from any single

block of signals in section 5.2. Section 5.3 shows the maximum rate for the hop-by-hop

relay scheme. In addition, an optimal relay selection algorithm with the complexity of

O(N2) is proposed, compared with the complexity of (N − 1)! in a full search. In section

5.4, the maximum rate for the level-by-level relay scheme is shown. Two theorems that

can prune the search space are proved. Furthermore, an optimal relay selection algorithm

is proposed. Finally, low-density parity-check (LDPC) codes are constructed for the single

source broadcast problem in section 5.5, and this chapter is concluded in section 5.6.

5.2 System model

A discrete memoryless wireless relay network N with N nodes consists of source input

alphabet sets X1,X2, · · · ,XN , channel output alphabet sets Y1,Y2, · · · ,YN and a given

distribution p(y1, y2, · · · , yN |x1, x2, · · · , xN). Without loss of generality, node 1 sends mes-

sages to all other nodes 2, 3, · · · , N . A reliable node set contains nodes that have success-

fully decoded the message. The set is initialized to {1}. After node 1 transmits signals, a

set of nodes that can decode the message is added to the reliable node set. In the following

transmission phase, a node in the reliable node set is chosen to relay the message. The

message is relayed until all nodes are added to the reliable node set.

A message w is chosen from an index set {1, 2, · · · ,M = 2nR}. An encoding function

Xn
i : {1, 2, · · · ,M} → X n

i generates codewords xni (1), xni (2), · · · , xni (M) for the i-th node

for i = 1, 2, · · · , N . When node i transmits w, it sends xni (w). Assume the total number

of transmission phases is K. Thus, the network rate Rn is defined as

Rn =
logM

Kn
=

1

K
R. (5.1)
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When node 1 transmits signals, node i cannot decode the message if R > I(X1;Yi).

However, due to the broadcast property, node i can still receive the signals. When the

message is relayed in multiple transmission phases, a node can accumulate multiple blocks

of received signals. We now show a theorem stating that a node can decode the message

from multiple blocks of received signals even if the message cannot be decoded from any

single block of signals.

Theorem 5. Assume a wireless relay network consists of source input alphabet sets X1,X2,

· · · ,XK, channel output alphabet set Y and a given distribution p(y|x1, x2, · · · , xK). In

each transmission phase i for i = 1, 2, · · · , K, node i sends the same message w ∈
{1, 2, · · · , 2nR}. A node Y overhears the signals in all K phases. Thus, all rates satis-

fying R <
∑

i I(Xi;Y ) for some p(x1)p(x2) · · · p(xK) are achievable.

Proof. Codebook generation: Generate 2nR codewords xi = xni according to
∏n

j=1 p(xi) for

node i and index them as xi(w).

Encoding: In phase i, to send index w, node i sends xi(w).

Decoding: Denote yi as the channel output in phase i. At the end of phase K, node

Y decodes w by finding the unique ŵ that satisfies the joint typicality checks (xi(ŵ),yi) ∈
A

(n)
ε (Xi, Y ) for all i. If there is no such or more than one such ŵ, an error is declared.

Analysis of the probability of error: The probability that independent xi and yi are

jointly typical is upper bounded by 2−n(I(Xi;Y )−3ε) for all i. There are totally 2nR − 1

such w. With the union bound, the probability of error is upper bounded by (2nR −
1)
∏

i 2
−n(I(Xi;Y )−3ε), which approaches zero when n→∞ and R <

∑
i I(Xi;Y ).

5.3 Hop-by-hop relay

In this section, the maximum-rate broadcast problem for a given discrete memoryless

wireless network is studied. In this problem, node 1 broadcasts messages to all other nodes
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2, 3, · · · , N . Signals are broadcast and messages are decoded based on received signals in

multiple transmission phases. In each phase, one of the node not in the reliable node set

can decode the message. The total number of phases in this hop-by-hop relay scheme is

N − 1.

Theorem 6. For the broadcast problem in an N-node wireless relay network with the

hop-by-hop relay scheme, the maximum rate of Rn over all relay routes is

max
π

1

N − 1
min

t=1,2,··· ,N−1

[
I(X1;Yπt) +

t−1∑
i=1

I(Xπi ;Yπt)

]
(5.2)

where node 1 is the source node, π is a set of all permutations on the node set {2, 3, · · · , N}
and πi is the i-th element in the permutation π.

Proof. In Theorem 6, a relay route is represented by a permutation π of the node set

{2, 3, · · · , N}. For a given π, from Theorem 5, all rates R <
[
I(X1;Yπt) +

∑t−1
i=1 I(Xπi ;Yπt)

]
are achievable for the node πt. Considering all nodes in the wireless relay network, all rates

R < min
t=1,2,··· ,N−1

[
I(X1;Yπt) +

t−1∑
i=1

I(Xπi ;Yπt)

]

are achievable. Thus, the maximum rate of Rn over all relay routes is (5.2).

To find the optimal relay route π∗, Rn can be calculated for all (N − 1)! permutations

of the node set {2, 3, · · · , N}. In the following, Algorithm 2 is proposed to find the optimal

π∗ with only
∑N−1

i=1 i calculations.

First, assign node 1 to the dummy π∗0. Next, initialize a set S = {2, 3, · · · , N} which

contains nodes waiting for their positions in the π. Initialize si to 0, where si is the

accumulated rate for node i. Assume π∗1, π
∗
2, · · · , π∗j−1 have been determined. To determine

the π∗j , calculate si = si + rπ∗
j−1,i

where rπ∗
j−1,i

is the link capacity from node π∗j−1 to node

i. Set π∗j to n where n is the node with the maximum si for all i ∈ S. Finally, remove

node n from the set S. This iterative process continues until π∗ is fully determined.
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Algorithm 2 The relay selection algorithm for the hop-by-hop relay scheme

ri,j ← I(Xi;Yj),∀i, j = 1, 2, · · · , N, i 6= j

S ← {2, 3, · · · , N}
si ← 0,∀i ∈ S
j ← 1

π∗0 ← 1

while j ≤ N − 1 do

m← 0

for i ∈ S do

si ← si + rπ∗
j−1,i

if si > m then

m← si

n← i

end if

end for

π∗j ← n

S ← S − n
j ← j + 1

end while

80



Theorem 7. The rate R∗n of the route π∗ given by Algorithm 2 is the maximum Rn over

all possible relay routes.

Proof. The node π∗m is defined as the bottleneck node if the minimum of
∑

i=1,π∗
1 ,π

∗
2 ,··· ,π∗

j−1
ri,π∗

j

for all j = 1, 2, · · · , N − 1 is
∑

i=1,π∗
1 ,π

∗
2 ,··· ,π∗

m−1
ri,π∗

m
.

Without loss of generality, we prove that by exchanging π∗j with π∗k for j < k, Rn would

not exceed R∗n.

If any node between π∗1 and π∗j−1 or between π∗k+1 and π∗N−1 is the bottleneck node π∗m,

Rn would not exceed R∗n by exchanging π∗j and π∗k since
∑

i=1,π∗
1 ,π

∗
2 ,··· ,π∗

m−1
ri,π∗

m
does not

change. If π∗j is the bottleneck node, R∗n = 1
N−1

∑
i=1,π∗

1 ,π
∗
2 ,··· ,π∗

j−1
ri,π∗

j
. After exchanging

π∗j and π∗k, the Rn of the new route would be upper bounded by 1
N−1

∑
i=1,π∗

1 ,π
∗
2 ,··· ,π∗

j−1
ri,π∗

k
.

Hence, Rn would not exceed R∗n by exchanging π∗j and π∗k since
∑

i=1,π∗
1 ,π

∗
2 ,··· ,π∗

j−1
ri,π∗

j
≥∑

i=1,π∗
1 ,π

∗
2 ,··· ,π∗

j−1
ri,π∗

k
. If π∗k is the bottleneck node, R∗n = 1

N−1

∑
i=1,π∗

1 ,π
∗
2 ,··· ,π∗

k−1
ri,π∗

k
. Af-

ter exchanging π∗j and π∗k, the Rn of the new route would be upper bounded by 1
N−1∑

i=1,π∗
1 ,π

∗
2 ,··· ,π∗

j−1
ri,π∗

k
, which is less than R∗n. Hence, Rn would not exceed R∗n by exchang-

ing π∗j and π∗k. Now we consider the case when a node between π∗j+1 and π∗k−1 is the

bottleneck node. We prove this case by contradiction. Assume Rn would exceed R∗n after

exchanging π∗j and π∗k. By this assumption,
∑

i=1,π∗
1 ,π

∗
2 ,··· ,π∗

m−1
ri,π∗

k
≥
∑

i=1,π∗
1 ,π

∗
2 ,··· ,π∗

j−1
ri,π∗

k
>∑

i=1,π∗
1 ,π

∗
2 ,··· ,π∗

m−1
ri,π∗

m
and hence π∗k would be ahead of π∗m, which contradicts the fact that

the bottleneck node is between π∗j+1 and π∗k−1. Thus, Rn would not exceed R∗n by exchang-

ing π∗j and π∗k.

5.4 Level-by-level relay

In an N -node wireless relay network N with the level-by-level relay scheme, a relay route

is an ordered node subset M ⊆ {2, 3, · · · , N}. When a node i ∈ M transmits, all other

nodes in the network can receive the signals. A set of nodes can decode the message based

on all received signals in previous phases. In this section, an example is first given to show
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that the level-by-level relay scheme could achieve higher rate than the hop-by-hop relay

scheme. Next, the maximum rate for the level-by-level relay scheme is shown. Finally, an

optimal relay selection algorithm is proposed.

First, we show that the level-by-level relay scheme could achieve higher rates. Con-

sider a 3-node wireless relay network where source node 1 broadcasts messages to node

2 and node 3, as shown in Figure 5.1. The network is constrained by I(X2;Y3) <

I(X1;Y3) < I(X1;Y2) and 1
2
I(X1;Y2) < I(X1;Y3). If the hop-by-hop relay scheme is em-

ployed, the optimal relay route is 1→ 2→ 3 and the achievable rate is min(1
2
(I(X1;Y3) +

I(X2;Y3)), 1
2
I(X1;Y2)). However, with the level-by-level relay scheme, node 1 can broad-

cast at a higher rate I(X1;Y3) and complete the transmission in one phase.

2

1

3

I(X1;Y2) I(X1;Y3)

I(X2;Y3)

Figure 5.1: A three-node broadcast network

An example of the level-by-level relay scheme is shown in Figure 5.2. In this example,

source node 1 broadcasts a message to 8 nodes in 4 phases. In phase 1, 4 nodes can decode

the message. In phase 2, nodes 2 relays the message and two additional nodes can decode

the message. In the last 2 phases, node 3 and node 4 relay the message. After 4 phases,

all nodes can decode the message.

1 1 1 1

2 2 2

3 3
4

Figure 5.2: Level-by-level relay for the broadcast problem in wireless relay networks
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Theorem 8. For the level-by-level relay scheme, the maximum rate of Rn over all relay

routes is

max
π

1

|π|+ 1
min

(
min

t=1,2,··· ,|π|

(
I(X1;Yπt) +

t−1∑
i=1

I(Xπi ;Yπt)

)
,

min
j /∈π

I(X1;Yj) +

|π|∑
i=1

I(Xπi ;Yj)

 (5.3)

where π is a set of all the ordered subset of {2, 3, · · · , N}, |π| is the total number of elements

in the π, and πi is the i-th element in the π.

Proof. For a given π, from Theorem 5, all rates

R < I(X1;Yπt) +
t−1∑
i=1

I(Xπi ;Yπt) (5.4)

are achievable for a relay node πt. Similarly, all rates

R < I(X1;Yj) +

|π|∑
i=1

I(Xπi ;Yj) (5.5)

are achievable for a non-relay node j. The achievable rate for the given π, denoted as Rn,π,

is the minimum of (5.4) and (5.5) over nodes 2, 3, · · · , N divided by |π| + 1. Hence, the

maximum rate of Rn over all relay routes is (5.3).

To find the optimal relay route π∗, an exhaustive searching algorithm can be used to

search the entire space π. For each π in the π, (5.3) is calculated. The total number of relay

routes with i relay nodes is (N−1)!
(N−1−i)! . For an N -node wireless relay network, the maximum

number of relay nodes is N − 2, excluding the source node and the last destination node.

Hence the degree of the search space, or the total number of relay routes, is
∑N−2

i=0
(N−1)!

(N−1−i)! .

Theorem 9. Assume there are totally N nodes in the wireless relay network. Assume node

1 is the source node. Denote r1,i = I(X1;Yi) for i = 2, 3, · · · , N . Denote Rmax = maxi r1,i

and Rmin = mini r1,i. Then the degree of the optimal relay route π∗ is less than or equal to⌊
Rmax
Rmin

⌋
− 1 where bxc is the largest integer not greater than x.
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Proof. We prove this theorem by contradiction. Assume the degree of the optimal relay

route π∗ is
⌊
Rmax
Rmin

⌋
or higher. By this assumption, the maximum rate of Rn would be less

than or equal to Rmax⌊
Rmax
Rmin

⌋
+1

which is less than Rmin. However, this contradicts the fact that

Rmin is achievable since the source node can broadcast at the rate of Rmin and complete

the broadcast in one phase.

With Theorem 9, the degree of the search space π can be reduced from
∑N−2

i=0
(N−1)!

(N−1−i)!

to
∑⌊

Rmax
Rmin

⌋
−1

i=0
(N−1)!

(N−1−i)! .

Theorem 10. For the k-th node πk in a π, denote Rk =
∑

i=1,π1,π2,··· ,πk−1
I(Xi;Yπk). The

achievable rate of a given route π, denoted as Rn,π, is less than or equal to 1
|π|+1

Rk.

In the following, a branch and bound algorithm is proposed in Algorithm 3, which

requires less computational complexity compared to that of the exhaustive search. The

basic idea is to enumerate all possible π by breadth-first search. In addition, the search

space is pruned by two bounds based on Theorem 9 and Theorem 10. Denote Rn,max as

the current maximum Rn,π during the enumeration. From Theorem 10, if a node is added

to a relay route π, the achievable rate would be upper bounded by 1
|π|+2

Rk. In addition,

if 1
|π|+2

Rk is less than Rn,max, adding relay nodes to the π will not increase the Rn,max.

Initialize Rn,max = mini=2,··· ,N I(X1;Yi) and enqueue {∅} to a First-In-First-Out (FIFO)

queue Q, where {∅} is a route only containing the source node. Dequeue a π′ from the

Q. For each node c that is not in the π′, append c at the end of π′ and get a new π.

For each π, if Rn,π is more than Rn,max, set Rn,max to Rn,π. In addition, calculate Rk

for k = 1, 2, · · · , |π|. According to Theorem 9 and Theorem 10, if 1
|π|+2

Rk ≥ Rn,max for

k = 1, 2, · · · , |π|, and |π| ≤
⌊
Rmax
Rmin

⌋
− 1, enqueue the π to Q.

Algorithm 3 is simulated in the following settings. A wireless network of N nodes is

generated where locations of the N nodes are uniformly distributed in a space (0, 1)×(0, 1).

The transmission power of node i is Pi, and is uniformly distributed in (1, 2). The link
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Algorithm 3 The relay selection algorithm for the level-by-level relay scheme

Rn,max ← min
i=2,3,··· ,N

I(X1;Yi)

Enqueue (Q, {∅})
while Q is not empty do

π′ ← Dequeue(Q)

for c not in π′ do

π ← π′ + c

Rn,π ← 1
|π|+1

min

(
min

t=1,··· ,|π|

(
I(X1;Yπt) +

t−1∑
i=1

I(Xπi ;Yπt)

)
,

min
j /∈π

(
I(X1;Yj) +

|π|∑
i=1

I(Xπi ;Yj)

))
if Rn,π > Rn,max then

Rn,max ← Rn,π

π∗ ← π

end if

for k = 1, 2, · · · , |π| do

Rk =
∑

i=1,π1,··· ,πk−1

I(Xi;Yπk)

end for

if 1
|π|+2

Rk ≥ Rn,max for k = 1, 2, · · · , |π| and |π| ≤
⌊
Rmax
Rmin

⌋
− 1 then

Enqueue(Q, π)

end if

end for

end while
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rate from node i to node j is

ri,j =
1

2
log

1 +

Pi
dαi,j

Ni,j

 (5.6)

where di,j is the geometric distance between node i and node j, and α is the path loss

exponent. As an example, in Figure 5.3, a wireless network of 20 nodes is randomly

generated. The noise power Ni,j = 1 and α = 2. Assume the star is the source node. The

size of a node corresponds to the power of the node. The optimal relay route is found and

shown in the figure.

0 0.2 0.4 0.6 0.8 1
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0.9

1

Figure 5.3: Optimal relay route of an example 20-node network

To see how many routes can be pruned by the two bounds, 100 wireless networks of 20

nodes are generated. The total number of searched routes for each network is recorded.

The algorithm is stopped if more than 105 routes have been searched. The histogram of
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the number of searched routes is shown in Figure 5.4. As we can see, in most cases, the

optimal relay route can be found quickly with the help of the two bounds.
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Figure 5.4: The histogram of the number of searched routes

5.5 Low-density parity-check code constructions for

the broadcast problem in wireless relay networks

In wireless networks, signals are broadcast and messages could be decoded based on received

signals in multiple transmission phases. In the preceding sections, relay selection was

studied for the single source broadcast problem when considering properties of wireless

networks. In this section, LDPC codes are constructed for the single source broadcast

problem.
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At the source node, a k1-bit message is encoded into an n1-bit codeword by a non-

systematic LDPC code. The n1-bit codeword is sent to all nodes. Assume a node has

decoded the message and is chosen to relay the message. The encoding graph at the relay

node is shown in Figure 5.5. The m2 bits in the upper layer of the graph are generated from

the n1-bit codeword by a systematic LDPC code. The relay node sends the m2 relay bits.

The n1-bit codeword is not sent. This code construction is similar to the constructions for

disjoint encoding in two-way relay channels and three-way relay channels where relay bits

are generated only from received codewords.

......
1 n1

...
1 m12

2

...

...
1 m22

Figure 5.5: Graph for encoding at the relay node

The decoding graph is shown in Figure 5.6. Assume a node receives signals of the n1-

bit codeword from the source node, and signals of the m2,m3, · · · relay bits from multiple

relay nodes. All relay bits are concatenated in the upper layer of the graph. The lower

layer of the graph is the code at the source node.
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......
1 n1

...
1 m12

2

...

...
1 m22

...

...
1 m32

...

Figure 5.6: Graph for decoding at intermediate nodes and the destination node

5.6 Conclusion

In the chapter, the maximum-rate broadcast problem for a given discrete memoryless

wireless relay network was studied where signals are broadcast and messages are decoded

based on received signals in multiple transmission phases. The maximum rates for the hop-

by-hop relay scheme and the level-by-level relay scheme were shown. Furthermore, optimal

relay selection algorithms for the two schemes were proposed. Finally, LDPC codes were

constructed for the single source broadcast problem in wireless relay networks.
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Chapter 6

The Iterative Hard Interference

Cancellation Decoder for Low-density

Parity-check Codes in 2-user

Multiple-access Channels

6.1 Introduction

The capacity region of multiple-access channels was first found by Ahlswede [40]. The

simplest multiple-access channels are 2-user multiple-access channels. In these channels,

signals from two source codewords are superimposed. These channels are also the channels

for the multiple-access phase in two-phase two-way relay channels where two source nodes

send their codewords to the relay node simultaneously. To achieve the capacity, techniques

such as time sharing [2], rate splitting [41, 42] or joint decoding [43, 44] can be used.

In [45], a sub-optimal belief propagation decoder was proposed to decode low-density

parity-check (LDPC) codes. However, the complexity of this decoder is high. In this

chapter, a simplified iterative hard interference cancellation decoder is proposed. The

90



graph of the codes includes variable nodes, check nodes and multiple-access nodes. By this

representation, message-passing algorithms can be easily described. The decoder is based

on log-likelihood ratios (LLRs). Interference is estimated, quantized and subtracted from

channel outputs. To analyze the codes, density evolution is derived. It is shown that the

required signal-to-noise ratio (SNR) for the proposed low-complexity decoder is only 0.2

dB higher than that for the sub-optimal belief propagation decoder at code rate 1
3
.

This chapter is organized as follows. In section 6.2, 2-user multiple-access channels

are reviewed. Section 6.3 introduces the system model. In section 6.4, the sub-optimal

belief propagation decoder based on probability values is reviewed. Section 6.5 proposes

an iterative hard interference cancellation decoder for LDPC codes based on LLRs. To

analyze the codes, density evolution is derived in section 6.6. In section 6.7, simulation

results on the two decoders are given. Finally, section 6.8 concludes this chapter.

6.2 2-user multiple-access channels

2-user multiple-access channels contain with two inputs X1, X2 and one output Y . The

capacity region of discrete memoryless multiple-access channels (X1×X2, p(y|x1, x2),Y) is

the closure of the convex hull of all (R1, R2) satisfying

R1 < I(X1;Y |X2), (6.1)

R2 < I(X2;Y |X1), (6.2)

R1 +R2 < I(X1, X2;Y ) (6.3)

for some product distribution p1(x1)p2(x2) on X1 ×X2 [2].

Gaussian multiple-access channels are modeled as Y = X1 + X2 + Z, where Z is a

Gaussian distributed random variable with mean zero and variance σ2. Assume the power

of X1 and X2 is P , that is 1
n

∑n
i=1 x

2
i ≤ P . Thus, the capacity region of the Gaussian
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multiple-access channels is

R1 < C

(
P

N

)
, (6.4)

R2 < C

(
P

N

)
, (6.5)

R1 +R2 < C

(
2P

N

)
(6.6)

where C( P
N

) = 1
2

log(1 + P
N

) [2].

The achievable rate region of the multiple-access channel for a fixed input distribution

is shown in Figure 6.1. In this figure, point A is achievable when X2 does not send any

information. Point B is achievable when successive decoding and interference cancellation

are used, i.e., treating X1 as noise and decoding X2 first, and then subtracting the decoded

X2 from the received Y and decoding X1. For non-corner points, it can be achieved by

time sharing [2], rate splitting [41, 42] or joint decoding [43, 44].

R1

R2

A

B

Figure 6.1: An achievable rate region of 2-user multiple-access channels for a fixed input

distribution
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6.3 System model

The system model for 2-user multiple-access channels is shown in Figure 6.2. For user

i, a K-bit source message si = [si,1, si,2, · · · , si,K ] is encoded to an N -bit codeword ci =

[ci,1, ci,2, · · · , ci,N ] by an LDPC code C where si,k ∈ {0, 1}, k = 1, 2, · · · , K, ci,n ∈ {0, 1}, n =

1, 2, · · · , N and i = 1, 2. The rate of each user is K
N

. The codeword c2 is then interleaved

to c̃2 according to π , that is, c2,n = c̃2,πn , where π is a permutation of [1, 2, · · · , N ] and

πn is the n-th element of π. ci,n is mapped to xi,n where xi,n ∈ {−1, 1} and the rule of

the mapping is 0 → 1 and 1 → −1. The channel output is Y = X1 + X2 + Z where

x1, x2 ∈ {−1, 1} and Z is a Gaussian distributed random variable with mean zero and

variance σ2.

C

Y

Z

+

s1

s2
C

c1

c2
 ¼

M

M

x1

x2
+

Figure 6.2: System model for 2-user multiple-access channels

6.4 The sub-optimal belief propagation decoder

In this section, the sub-optimal belief propagation decoder for 2-user multiple-access chan-

nels [45] is reviewed.

First, a graph is introduced which can easily describe the message-passing algorithms

in section 6.4 and section 6.5. The graph is shown in Figure 6.3. In this graph, upper

layer variable nodes (VN) and check nodes (CN) represent the code for user 1. Lower

layer variable nodes and check nodes represent the code for user 2. In addition, this graph
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has a new type of nodes called multiple-access nodes (MAN). The multiple-access node is

connected to a variable node of code 1 and a variable node of code 2.

Decoder 1

Decoder 2

CN

VN

MAN
21 , xxp

Figure 6.3: Graph of codes in 2-user multiple-access channels

Assume the source is equiprobable, that is, p(X1 = 1, X2 = 1) = p(X1 = 1, X2 =

−1) = p(X1 = −1, X2 = 1) = p(X1 = −1, X2 = −1) = 1
4
. The intrinsic values of the

multiple-access node are four posterior probabilities

px1,x2 ∝ p(y|X1 = x1, X2 = x2) =
1√
2πσ

e−
(y−x1−x2)

2

2σ2 (6.7)

where px1,x2 = p(X1 = x1, X2 = x2|y), x1, x2 ∈ {1,−1} and σ2 is the noise power.

For a multiple-access node, its input message from a variable node of node 1 is px̃1 =∏
i px1,i where px1,i is a message from a check node connecting to the variable node. The

message flow through a variable node to a multiple-access node is shown in Figure 6.4.

Similarly, the input message from a variable node of code 2 is px̃2 =
∏

i px2,i where px2,i is

a message from a check node connecting to the variable node.
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1
~xp

2,1xp1,1xp

Figure 6.4: Message flow through a variable node to a multiple-access node in the belief

propagation decoder

Functions of the multiple-access nodes are

px̂1 ∝
∑

x2=x̃2∈{1,−1}

px1,x2px̃2 , (6.8)

px̂2 ∝
∑

x1=x̃1∈{1,−1}

px1,x2px̃1 (6.9)

where px̂1 is the message passed to a variable node of code 1 and px̂2 is the message passed

to a variable node of code 2. The message flow through a multiple-access node is shown in

Figure 6.5.

Note that in the first decoding iteration, multiple-access nodes receive nothing from

variable nodes. In this case, px̃1=1, px̃1=−1, px̃2=1 and px̃2=−1 are set to 1
2
. Hence

px̂1 ∝
∑
x2

px1,x2 , (6.10)

px̂2 ∝
∑
x1

px1,x2 . (6.11)

For a variable node, one of its edges is connected to a multiple-access node and the
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1x̂p

2
~xp

21 , xxp

Figure 6.5: Message flow through a multiple-access node in the belief propagation decoder

remaining edges are connected to check nodes. Functions of the variable node are

px1,j ∝
∏
i 6=j

px1,ipx̂1 , (6.12)

px2,j ∝
∏
i 6=j

px2,ipx̂2 (6.13)

where i and j are check node indices. The message flow through a variable node to a check

node is shown in Figure 6.6.

For a degree-M check node, its output message is based on M − 1 input messages and

can be recursively calculated by

chk(m1,m2, ...,mM−1) = chk(m1, chk(m2, ...,mM−1)) (6.14)

where mi = (pi,1, pi,−1) is the i-th input message. To calculate chk(m1,m2) where m1 =

(p1,1,p1,−1) and m2 = (p2,1,p2,−1), the output (p1, p−1) is

(p1, p−1) = chk(m1,m2) (6.15)

= chk((p1,1, p1,−1), (p2,1, p2,−1)) (6.16)

= (p1,1p2,1 + p1,−1p2,−1, p1,1p2,−1 + p1,−1p2,1). (6.17)
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jxp ,1

Figure 6.6: Message flow through a variable node to a check node in the belief propagation

decoder

The sub-optimal belief propagation decoder adopts the following message passing schedul-

ing. First, multiple-access nodes pass messages to variable nodes based on (6.10) and (6.11).

Next, the two codewords are decoded in the upper and lower decoders simultaneously. The

decoding outputs px̃1 and px̃2 are passed back to multiple-access nodes from variable nodes.

Finally, new messages calculated from (6.8) and (6.9) are passed to the variable nodes for

the next decoding iteration.

In the sub-optimal belief propagation decoder, a message is represented by a probability

value pair, rather than an LLR due to the functions (6.8) and (6.9) in multiple-access nodes.

Since the functions of variable nodes and check nodes are the same as those in point-to-

point channels, LLRs can still be used in these nodes. However, before the LLR is passed

to the multiple-access node, it is transformed into the probability value pair (p1, p−1) by

p1 =
em

1 + em
, (6.18)

p−1 =
1

1 + em
(6.19)

where m is the LLR message. In addition, when the probability value pair (p1, p−1) is

passed to the variable node, it is transformed into the LLR by m = log p1
p−1

.
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6.5 The iterative hard interference cancellation de-

coder

In this section, an iterative hard interference cancellation decoder is proposed for LDPC

codes in 2-user multiple-access channels.

In 2-user multiple-access channels, the channel output is Y = X1+X2+Z where X1 and

X2 are source signals from the two users and Z is the noise. At the destination node, X2

is considered as interference when decoding X1 and vice versa. If the interference signal is

removed, X1 and X2 could be decoded from X1 +Z and X2 +Z by two individual point-to-

point channel decoders. However, the exact interference is unknown before codewords are

decoded. Only the soft estimate of the interference is known. In this section, we propose

an iterative hard interference cancellation decoder, inspired by the observation that the

estimates become more accurate during the iterative decoding. In each decoding iteration,

interference is estimated, quantized and subtracted from the received signals.

In this decoder, functions of variable nodes and check nodes are based on LLRs. When

LLRs c1,i from check nodes of code 1 are received, the variable node calculates the soft

estimate x̃1 =
∑

i c1,i. The message flow through a variable node to a multiple-access node

is shown in Figure 6.7. Similarly, x̃2 =
∑

i c2,i where c2,i is a message from a check node of

code 2. x̃1 and x̃2 are passed to the multiple-access node. In the multiple-access node, the

hard estimates x̂1 and x̂2 are simply the sign of x̃1 and x̃2 where sgn(x) = 1 when x ≥ 0

and sgn(x) = −1 when x < 0. Thus, the estimates of channel outputs without interference

are y1 = y − x̂2 and y2 = y − x̂1, whose corresponding LLRs m1 = 2y1
σ2 and m2 = 2y2

σ2 are

passed to variable nodes. Finally, the variable node of code 1 calculates

v1,j =
∑
i 6=j

c1,i +m1 (6.20)

and the variable node of code 2 calculates

v2,j =
∑
i 6=j

c2,i +m2 (6.21)
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Figure 6.7: Message flow through a variable node to a multiple-access node in the iterative

hard interference cancellation decoder

where v1,j is an output message of a variable node of code 1 and v2,j is an output message

of a variable node of code 2. The messages are sent to check nodes for the next decoding

iteration. The message flow through a variable node to a check node is shown in Figure

6.8.

6.6 Density evolution

To analyze codes for multiple-access channels, it seems at first that each codeword has to

be analyzed since the probability of error is dependent on the codeword. For example, if

x1 = x2 = [1, 1, 1, · · · ], the probability of error would be 0 when no noise exists. However,

if x1 = [1,−1, 1,−1, · · · ] and x2 = [−1, 1,−1, 1, · · · ], they cannot be decoded at all.

It is shown in [46] that an (x1,x2) pair, whose probability of error is the same as the

average probability of error on all (x1,x2) pairs, can be found. Define type τ of an x1

or x2 as the fraction of ones in the x1 or x2. Define type ϕ of an X1 + X2 sequence as

(ϕ1, ϕ2, ϕ3) where ϕ1, ϕ2, ϕ3 are the fractions of -2, 0 and 2 in the sequence. By law of large

numbers, the dominant type of the X1 +X2 sequence is (1
4
, 1

2
, 1

4
). The probabilities of other

99



1m

1,1c

jv ,1

2,1c

Figure 6.8: Message flow through a variable node to a check node in the iterative hard

interference cancellation decoder

types are negligible. The probability of error for each X1 + X2 sequence with the same

type ϕ would be the same if the length of the sequence is infinity. In addition, by channel

symmetry, if an (x1, x2) pair (-1,-1) is inverted to (1,1), the probability of error does not

change. By these properties, it is assumed that only (x1,x2) pairs of x1 = [1, 1, 1, · · · ] and

x2 = [1,−1, 1,−1, · · · ] are sent in density evolution. The type of the X1 +X2 sequence is

(0,1
2
,1
2
). The probability density function of Y is

PY =
1

2σ
√

2π

(
e−

(y−2)2

2σ2 + e−
y2

2σ2

)
. (6.22)

Thus, any existing density evolution methods [11, 12, 8] can be used to analyze the codes

and optimize degree distributions. For a 2-user Gaussian multiple-access channel with the

rate pair (R1,R2) = (0.5, 0.5), an optimized code ensemble which is only 0.18 dB away

from the capacity is reported in [47].

In the following, density evolution equations for multiple-access nodes in the hard

interference cancellation decoder are derived. Assume the probability density function
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of X̃1 and X̃2 is PX̃1
and PX̃2

. Since X̂1 = sgn(X̃1) and X̂2 = sgn(X̃2),

P−X̂1
= δ−1

∫ ∞
0

PX̃1
+ δ1

∫ 0

−∞
PX̃1

, (6.23)

P−X̂2
= δ−1

∫ ∞
0

PX̃2
+ δ1

∫ 0

−∞
PX̃2

(6.24)

where δ is the Dirac delta function. Assume Y is independent with X̂1 and X̂2. By

Y1 = Y − X̂2 and Y2 = Y − X̂1, the probability density functions of the output of the

multiple-access nodes are

PY1 = PY ⊗ P−X̂2
, (6.25)

PY2 = PY ⊗ P−X̂1
(6.26)

where ⊗ is convolution. The probability density functions of LLRs M1 = 2Y1
σ2 and M2 = 2Y2

σ2

are

PM1 =
σ2

2
PY1

(
σ2

2
m1

)
, (6.27)

PM2 =
σ2

2
PY2

(
σ2

2
m2

)
. (6.28)

6.7 Simulation results

In this section, simulation results of an (1920.1280.3.303) [48] LDPC code for Gaussian

multiple-access channels are reported in Figure 6.9. The length of the codeword is 1920. By

the third inequality of the capacity region of multiple-access channels R1+R2 < C(2P
N

), the

minimum required SNR P
N

is −1.19 dB for error-free communications when R1 = R2 = 1
3
.

As we know, there is a 2 to 3 dB gap between soft decoders and hard decoders in point-

to-point channels. However, if the soft interference cancellation is replaced with a hard

one in 2-user multiple-access channel decoder, and soft decoding is kept in variable nodes

and check nodes, the required SNR for the iterative hard interference cancellation decoder

is only 0.2 dB higher than that for the sub-optimal belief propagation decoder at the bit

error rate (BER) of 10−3.7.
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Figure 6.9: Simulation results of an (1920.1280.3.303) low-density parity-check code in

Gaussian multiple-access channels

6.8 Conclusion

In the chapter, an iterative hard interference cancellation decoder for LDPC codes in 2-user

multiple-access channels is proposed. The decoder is based on LLRs, and interference is

estimated, quantized and subtracted from channel outputs. To analyze codes for multiple-

access channels, density evolution is derived. It was shown that the required SNR for the

proposed low-complexity decoder is only 0.2 dB higher than that for an existing sub-optimal

belief propagation decoder at code rate 1
3
.
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Chapter 7

Conclusions and Future Work

7.1 Major research contributions

In wireless networks, signals are broadcast and codewords can be jointly decoded based

on multiple received signals. This thesis mainly studied low-density parity-check (LDPC)

code constructions in such networks. The main contributions of the thesis are as follows.

• In Chapter 3, LDPC codes for half-duplex three-phase two-way relay channels were

proposed. At the relay node, a systematic LDPC code was constructed to encode

two source codewords. At the destination node, signals from the source node and the

relay node were used for joint decoding. It was demonstrated that good codes can

be found by discretized density evolution and iterative linear programing.

• Chapter 4 extended the study of LDPC codes to half-duplex three-way relay channels.

An achievable rate region of half-duplex three-way relay channels was first proved.

In addition, LDPC codes were constructed for each sub-region of the achievable rate

region for half-duplex three-way relay channels.

• Chapter 5 studied the maximum-rate broadcast problem for a given discrete memo-

ryless wireless relay network. The maximum rates for the hop-by-hop relay scheme
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and the level-by-level relay scheme were given. Furthermore, optimal relay selec-

tion algorithms were proposed for the two relay schemes. Finally, LDPC codes were

constructed for the broadcast problem in wireless relay networks.

• Chapter 6 proposed an iterative hard interference cancellation decoder for LDPC

codes in 2-user multiple-access channels. The iterative hard interference cancellation

decoder is based on log-likelihood ratios (LLRs). Interference is estimated, quantized

and subtracted from channel outputs. The required signal-to-noise ratio (SNR) for

the proposed low-complexity decoder has been shown to be only 0.2 dB higher than

that for an existing sub-optimal belief propagation decoder at code rate 1
3
.

7.2 Future work

7.2.1 Codes in fading channels and wireless networks

This thesis has considered only the case when Gaussian noises exist. Future work could

extend this study to more realistic wireless channel models, such as fading channels. In

addition, LDPC code constructions could be extended from two-way relay channels to

wireless relay networks. In such cases, a terminal node can help to relay multiple messages

and a codeword can be helped by multiple relay nodes. The performance of LDPC codes

in such networks requires further investigation.

7.2.2 Relay selection for multicast and unicast in wireless relay

networks

This thesis has examined the relay selection problem for broadcasting messages in wireless

relay networks. The relay selection problem can also be extended to the multicast and

unicast cases, even for multiple-source cases. Since the relay selection problem is in general

not solvable in polynomial time, efficient heuristic algorithms should be developed.
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