16,114 research outputs found

    Circular formation control of fixed-wing UAVs with constant speeds

    Full text link
    In this paper we propose an algorithm for stabilizing circular formations of fixed-wing UAVs with constant speeds. The algorithm is based on the idea of tracking circles with different radii in order to control the inter-vehicle phases with respect to a target circumference. We prove that the desired equilibrium is exponentially stable and thanks to the guidance vector field that guides the vehicles, the algorithm can be extended to other closed trajectories. One of the main advantages of this approach is that the algorithm guarantees the confinement of the team in a specific area, even when communications or sensing among vehicles are lost. We show the effectiveness of the algorithm with an actual formation flight of three aircraft. The algorithm is ready to use for the general public in the open-source Paparazzi autopilot.Comment: 6 pages, submitted to IROS 201

    Decentralized MPC based Obstacle Avoidance for Multi-Robot Target Tracking Scenarios

    Full text link
    In this work, we consider the problem of decentralized multi-robot target tracking and obstacle avoidance in dynamic environments. Each robot executes a local motion planning algorithm which is based on model predictive control (MPC). The planner is designed as a quadratic program, subject to constraints on robot dynamics and obstacle avoidance. Repulsive potential field functions are employed to avoid obstacles. The novelty of our approach lies in embedding these non-linear potential field functions as constraints within a convex optimization framework. Our method convexifies non-convex constraints and dependencies, by replacing them as pre-computed external input forces in robot dynamics. The proposed algorithm additionally incorporates different methods to avoid field local minima problems associated with using potential field functions in planning. The motion planner does not enforce predefined trajectories or any formation geometry on the robots and is a comprehensive solution for cooperative obstacle avoidance in the context of multi-robot target tracking. We perform simulation studies in different environmental scenarios to showcase the convergence and efficacy of the proposed algorithm. Video of simulation studies: \url{https://youtu.be/umkdm82Tt0M

    Coordinated task manipulation by nonholonomic mobile robots

    Get PDF
    Coordinated task manipulation by a group of autonomous mobile robots has received signicant research effort in the last decade. Previous studies in the area revealed that one of the main problems in the area is to avoid the collisions of the robots with obstacles as well as with other members of the group. Another problem is to come up with a model for successful task manipulation. Signicant research effort has accumulated on the denition of forces to generate reference trajectories for each autonomous mobile robots engaged in coordinated behavior. If the mobile robots are nonholonomic, this approach fails to guarantee successful manipulation of the task since the so-generated reference trajectories might not satisfy the nonholonomic constraint. In this work, we introduce a novel coordinated task manipulation model inclusive of an online collision avoidance algorithm. The reference trajectory for each autonomous nonholonomic mobile robot is generated online in terms of linear and angular velocity references for the robot; hence these references automatically satisfy the nonholonomic constraint. The generated reference velocities inevitably depend on the nature of the specied coordinated task. Several coordinated task examples, on the basis of a generic task, have been presented and the proposed model is veried through simulations
    corecore