2,616 research outputs found

    Cooperative subcarrier sensing using antenna diversity based weighted virtual sub clustering

    Get PDF
    The idea of cooperation and the clustering amongst cognitive radios (CRs) has recently been focus of attention of research community, owing to its potential to improve performance of spectrum sensing (SS) schemes. This focus has led to the paradigm of cluster based cooperative spectrum sensing (CBCSS). In perspective of high date rate 4th generation wireless systems, which are characterized by orthogonal frequency division multiplexing (OFDM) and spatial diversity, there is a need to devise effective SS strategies. A novel CBCSS scheme is proposed for OFDM subcarrier detection in order to enable the non-contiguous OFDM (NC-OFDM) at the physical layer of CRs for efficient utilization of spectrum holes. Proposed scheme is based on the energy detection in MIMO CR network, using equal gain combiner as diversity combining technique, hard combining (AND, OR and Majority) rule as data fusion technique and antenna diversity based weighted clustering as virtual sub clustering algorithm. Results of proposed CBCSS are compared with conventional CBCSS scheme for AND, OR and Majority data fusion rules. Moreover the effects of antenna diversity, cooperation and cooperating clusters are also discussed

    Cluster-based cooperative subcarrier sensing using antenna diversity-based weighted data fusion

    Get PDF
    Cooperative spectrum sensing (CSS) is used in cognitive radio (CR) networks to improve the spectrum sensing performance in shadow fading environments. Moreover, clustering in CR networks is used to reduce reporting time and bandwidth overhead during CSS. Thus, cluster-based cooperative spectrum sensing (CBCSS) has manifested satisfactory spectrum sensing results in harsh environments under processing constraints. On the other hand, the antenna diversity of multiple input multiple output CR systems can be exploited to further improve the spectrum sensing performance. This paper presents the CBCSS performance in a CR network which is comprised of single- as well as multiple-antenna CR systems. We give theoretical analysis of CBCSS for orthogonal frequency division multiplexing signal sensing and propose a novel fusion scheme at the fusion center which takes into account the receiver antenna diversity of the CRs present in the network. We introduce the concept of weighted data fusion in which the sensing results of different CRs are weighted proportional to the number of receiving antennas they are equipped with. Thus, the receiver diversity is used to the advantage of improving spectrum sensing performance in a CR cluster. Simulation results show that the proposed scheme outperforms the conventional CBCSS scheme

    Collaborative spectrum sensing optimisation algorithms for cognitive radio networks

    Get PDF
    The main challenge for a cognitive radio is to detect the existence of primary users reliably in order to minimise the interference to licensed communications. Hence, spectrum sensing is a most important requirement of a cognitive radio. However, due to the channel uncertainties, local observations are not reliable and collaboration among users is required. Selection of fusion rule at a common receiver has a direct impact on the overall spectrum sensing performance. In this paper, optimisation of collaborative spectrum sensing in terms of optimum decision fusion is studied for hard and soft decision combining. It is concluded that for optimum fusion, the fusion centre must incorporate signal-to-noise ratio values of cognitive users and the channel conditions. A genetic algorithm-based weighted optimisation strategy is presented for the case of soft decision combining. Numerical results show that the proposed optimised collaborative spectrum sensing schemes give better spectrum sensing performance

    Energy efficient scheme based on simultaneous transmission of the local decisions in cooperative spectrum sensing

    Get PDF
    A common concern regarding cooperative spectrum sensing (CSS) schemes is the occupied bandwidth and the energy consumption during the transmissions of sensing information to the fusion center over the reporting control channels. This concern is intensified if the number of cooperating secondary users in the network is large. This article presents a new fusion strategy for a CSS scheme, aiming at increasing the energy efficiency of a recently proposed bandwidth-efficient fusion scheme. Analytical results and computational simulations unveil a high increase in energy efficiency when compared with the original approach, yet achieving better performances in some situations, and lower implementation complexity

    Cooperative wideband spectrum sensing with multi-bit hard decision in cognitive radio

    Get PDF
    Cognitive radio offers an increasingly attractive solution to overcome the underutilization problem. A sensor network based cooperative wideband spectrum sensing is proposed in this paper. The purpose of the sensor network is to determine the frequencies of the sources and reduced the total sensing time using a multi-resolution sensing technique. The final result is computed by data fusion of multi-bit decisions made by each cooperating secondary user. Simulation results show improved performance in energy efficiency

    Byzantine Attack and Defense in Cognitive Radio Networks: A Survey

    Full text link
    The Byzantine attack in cooperative spectrum sensing (CSS), also known as the spectrum sensing data falsification (SSDF) attack in the literature, is one of the key adversaries to the success of cognitive radio networks (CRNs). In the past couple of years, the research on the Byzantine attack and defense strategies has gained worldwide increasing attention. In this paper, we provide a comprehensive survey and tutorial on the recent advances in the Byzantine attack and defense for CSS in CRNs. Specifically, we first briefly present the preliminaries of CSS for general readers, including signal detection techniques, hypothesis testing, and data fusion. Second, we analyze the spear and shield relation between Byzantine attack and defense from three aspects: the vulnerability of CSS to attack, the obstacles in CSS to defense, and the games between attack and defense. Then, we propose a taxonomy of the existing Byzantine attack behaviors and elaborate on the corresponding attack parameters, which determine where, who, how, and when to launch attacks. Next, from the perspectives of homogeneous or heterogeneous scenarios, we classify the existing defense algorithms, and provide an in-depth tutorial on the state-of-the-art Byzantine defense schemes, commonly known as robust or secure CSS in the literature. Furthermore, we highlight the unsolved research challenges and depict the future research directions.Comment: Accepted by IEEE Communications Surveys and Tutoiral

    Fully Distributed Cooperative Spectrum Sensing for Cognitive Radio Networks

    Get PDF
    Cognitive radio networks (CRN) sense spectrum occupancy and manage themselves to operate in unused bands without disturbing licensed users. The detection capability of a radio system can be enhanced if the sensing process is performed jointly by a group of nodes so that the effects of wireless fading and shadowing can be minimized. However, taking a collaborative approach poses new security threats to the system as nodes can report false sensing data to force a wrong decision. Providing security to the sensing process is also complex, as it usually involves introducing limitations to the CRN applications. The most common limitation is the need for a static trusted node that is able to authenticate and merge the reports of all CRN nodes. This paper overcomes this limitation by presenting a protocol that is suitable for fully distributed scenarios, where there is no static trusted node
    • 

    corecore