30 research outputs found

    Byzantine Attack and Defense in Cognitive Radio Networks: A Survey

    Full text link
    The Byzantine attack in cooperative spectrum sensing (CSS), also known as the spectrum sensing data falsification (SSDF) attack in the literature, is one of the key adversaries to the success of cognitive radio networks (CRNs). In the past couple of years, the research on the Byzantine attack and defense strategies has gained worldwide increasing attention. In this paper, we provide a comprehensive survey and tutorial on the recent advances in the Byzantine attack and defense for CSS in CRNs. Specifically, we first briefly present the preliminaries of CSS for general readers, including signal detection techniques, hypothesis testing, and data fusion. Second, we analyze the spear and shield relation between Byzantine attack and defense from three aspects: the vulnerability of CSS to attack, the obstacles in CSS to defense, and the games between attack and defense. Then, we propose a taxonomy of the existing Byzantine attack behaviors and elaborate on the corresponding attack parameters, which determine where, who, how, and when to launch attacks. Next, from the perspectives of homogeneous or heterogeneous scenarios, we classify the existing defense algorithms, and provide an in-depth tutorial on the state-of-the-art Byzantine defense schemes, commonly known as robust or secure CSS in the literature. Furthermore, we highlight the unsolved research challenges and depict the future research directions.Comment: Accepted by IEEE Communications Surveys and Tutoiral

    Deep reinforcement learning for attacking wireless sensor networks

    Get PDF
    Recent advances in Deep Reinforcement Learning allow solving increasingly complex problems. In this work, we show how current defense mechanisms in Wireless Sensor Networks are vulnerable to attacks that use these advances. We use a Deep Reinforcement Learning attacker architecture that allows having one or more attacking agents that can learn to attack using only partial observations. Then, we subject our architecture to a test-bench consisting of two defense mechanisms against a distributed spectrum sensing attack and a backoff attack. Our simulations show that our attacker learns to exploit these systems without having a priori information about the defense mechanism used nor its concrete parameters. Since our attacker requires minimal hyper-parameter tuning, scales with the number of attackers, and learns only by interacting with the defense mechanism, it poses a significant threat to current defense procedures

    When Attackers Meet AI: Learning-empowered Attacks in Cooperative Spectrum Sensing

    Full text link
    Defense strategies have been well studied to combat Byzantine attacks that aim to disrupt cooperative spectrum sensing by sending falsified versions of spectrum sensing data to a fusion center. However, existing studies usually assume network or attackers as passive entities, e.g., assuming the prior knowledge of attacks is known or fixed. In practice, attackers can actively adopt arbitrary behaviors and avoid pre-assumed patterns or assumptions used by defense strategies. In this paper, we revisit this security vulnerability as an adversarial machine learning problem and propose a novel learning-empowered attack framework named Learning-Evaluation-Beating (LEB) to mislead the fusion center. Based on the black-box nature of the fusion center in cooperative spectrum sensing, our new perspective is to make the adversarial use of machine learning to construct a surrogate model of the fusion center's decision model. We propose a generic algorithm to create malicious sensing data using this surrogate model. Our real-world experiments show that the LEB attack is effective to beat a wide range of existing defense strategies with an up to 82% of success ratio. Given the gap between the proposed LEB attack and existing defenses, we introduce a non-invasive method named as influence-limiting defense, which can coexist with existing defenses to defend against LEB attack or other similar attacks. We show that this defense is highly effective and reduces the overall disruption ratio of LEB attack by up to 80%

    Rogue Signal Threat on Trust-based Cooperative Spectrum Sensing in Cognitive Radio Networks

    Get PDF
    Cognitive Radio Networks (CRNs) are a next generation network that is expected to solve the wireless spectrum shortage problem, which is the shrinking of available wireless spectrum resources needed to facilitate future wireless applications. The first CRN standard, the IEEE 802.22, addresses this particular problem by allowing CRNs to share geographically unused TV spectrum to mitigate the spectrum shortage. Equipped with reasoning and learning engines, cognitive radios operate autonomously to locate unused channels to maximize its own bandwidth and Quality-of-Service (QoS). However, their increased capabilities over traditional radios introduce a new dimension of security threats. In an NSF 2009 workshop, the FCC raised the question, “What authentication mechanisms are needed to support cooperative cognitive radio networks? Are reputation-based schemes useful supplements to conventional Public Key Infrastructure (PKI) authentication protocols?” Reputation-based schemes in cognitive radio networks are a popular technique for performing robust and accurate spectrum sensing without any inter-communication with licensed networks, but the question remains on how effective they are at satisfying the FCC security requirements. Our work demonstrates that trust-based Cooperative Spectrum Sensing (CSS) protocols are vulnerable to rogue signals, which creates the illusion of inside attackers and raises the concern that such schemes are overly sensitive Intrusion Detection Systems (IDS). The erosion of the sensor reputations in trust-based CSS protocols makes CRNs vulnerable to future attacks. To counter this new threat, we introduce community detection and cluster analytics to detect and negate the impact of rogue signals on sensor reputations
    corecore