1,621 research outputs found

    Dynamic Channel Access Scheme for Interference Mitigation in Relay-assisted Intra-WBANs

    Full text link
    This work addresses problems related to interference mitigation in a single wireless body area network (WBAN). In this paper, We propose a distributed \textit{C}ombined carrier sense multiple access with collision avoidance (CSMA/CA) with \textit{F}lexible time division multiple access (\textit{T}DMA) scheme for \textit{I}nterference \textit{M}itigation in relay-assisted intra-WBAN, namely, CFTIM. In CFTIM scheme, non interfering sources (transmitters) use CSMA/CA to communicate with relays. Whilst, high interfering sources and best relays use flexible TDMA to communicate with coordinator (C) through using stable channels. Simulation results of the proposed scheme are compared to other schemes and consequently CFTIM scheme outperforms in all cases. These results prove that the proposed scheme mitigates interference, extends WBAN energy lifetime and improves the throughput. To further reduce the interference level, we analytically show that the outage probability can be effectively reduced to the minimal.Comment: 2015 IEEE International Conference on Protocol Engineering (ICPE) and International Conference on New Technologies of Distributed Systems (NTDS), Paris, France. arXiv admin note: text overlap with arXiv:1602.0865

    Interference Mitigation in Multi-Hop Wireless Networks with Advanced Physical-Layer Techniques

    Get PDF
    In my dissertation, we focus on the wireless network coexistence problem with advanced physical-layer techniques. For the first part, we study the problem of Wireless Body Area Networks (WBAN)s coexisting with cross-technology interference (CTI). WBANs face the RF cross-technology interference (CTI) from non-protocol-compliant wireless devices. Werst experimentally characterize the adverse effect on BAN caused by the CTI sources. Then we formulate a joint routing and power control (JRPC) problem, which aims at minimizing energy consumption while satisfying node reachability and delay constraints. We reformulate our problem into a mixed integer linear programing problem (MILP) and then derive the optimal results. A practical JRPC protocol is then proposed. For the second part, we study the coexistence of heterogeneous multi-hop networks with wireless MIMO. We propose a new paradigm, called cooperative interference mitigation (CIM), which makes it possible for disparate networks to cooperatively mitigate the interference to/from each other to enhance everyone\u27s performance. We establish two tractable models to characterize the CIM behaviors of both networks by using full IC (FIC) and receiver-side IC (RIC) only. We propose two bi-criteria optimization problems aiming at maximizing both networks\u27 throughput, while cooperatively canceling the interference between them based on our two models. In the third and fourth parts, we study the coexistence problem with MIMO from a different point of view: the incentive of cooperation. We propose a novel two-round game framework, based on which we derive two networks\u27 equilibrium strategies and the corresponding closed-form utilities. We then extend our game-theoretical analysis to a general multi-hop case, specifically the coexistence problem between primary network and multi-hop secondary network in the cognitive radio networks domain. In the final part, we study the benefits brought by reconfigurable antennas (RA). We systematically exploit the pattern diversity and fast reconfigurability of RAs to enhance the throughput of MWNs. Werst propose a novel link-layer model that captures the dynamic relations between antenna pattern, link coverage and interference. Based on our model, a throughput optimization framework is proposed by jointly considering pattern selection and link scheduling, which is formulated as a mixed integer non-linear programming problem

    Survey of Spectrum Sharing for Inter-Technology Coexistence

    Full text link
    Increasing capacity demands in emerging wireless technologies are expected to be met by network densification and spectrum bands open to multiple technologies. These will, in turn, increase the level of interference and also result in more complex inter-technology interactions, which will need to be managed through spectrum sharing mechanisms. Consequently, novel spectrum sharing mechanisms should be designed to allow spectrum access for multiple technologies, while efficiently utilizing the spectrum resources overall. Importantly, it is not trivial to design such efficient mechanisms, not only due to technical aspects, but also due to regulatory and business model constraints. In this survey we address spectrum sharing mechanisms for wireless inter-technology coexistence by means of a technology circle that incorporates in a unified, system-level view the technical and non-technical aspects. We thus systematically explore the spectrum sharing design space consisting of parameters at different layers. Using this framework, we present a literature review on inter-technology coexistence with a focus on wireless technologies with equal spectrum access rights, i.e. (i) primary/primary, (ii) secondary/secondary, and (iii) technologies operating in a spectrum commons. Moreover, we reflect on our literature review to identify possible spectrum sharing design solutions and performance evaluation approaches useful for future coexistence cases. Finally, we discuss spectrum sharing design challenges and suggest future research directions

    Exploiting unknown dynamics in communications amongst coexisting wireless body area networks

    Full text link
    © 2015 IEEE. In this paper, we propose a prediction algorithm for dynamic channel allocation amongst coexisting Wireless body area networks (WBANs). Variations in channel assignment due to mobility scenarios within each WBAN as well as the movement of WBANs towards each other is investigated. The proposed scheme is further optimized to allocate the optimum transmission time with synchronous and parallel transmissions such that interference is fully avoided. This reduces the number of interfering nodes and leads to better usage of the scarce limitation of resources in these networks, larger network lifetime, higher energy savings and higher throughput. In fact, the aim of this protocol is to mitigate interference along with maintaining minimum power consumption in order to maximize network lifetime and increase the spatial reuse and throughput of each WBAN. Simulation results show that our approach achieves a much higher spatial reuse using the smart spectrum allocation scheme for interference mitigation in collocated WBANs. We conduct extensive simulations for coexistence prediction in different mobility scenarios using the NS-2 simulator. Consequently, we demonstrate the efficiency of the proposed protocol in providing interference-free channel assignments and higher energy savings

    Spectrum Sharing Methods in Coexisting Wireless Networks

    Get PDF
    Radio spectrum, the fundamental basis for wireless communication, is a finite resource. The development of the expanding range of radio based devices and services in recent years makes the spectrum scarce and hence more costly under the paradigm of extensive regulation for licensing. However, with mature technologies and with their continuous improvements it becomes apparent that tight licensing might no longer be required for all wireless services. This is from where the concept of utilizing the unlicensed bands for wireless communication originates. As a promising step to reduce the substantial cost for radio spectrum, different wireless technology based networks are being deployed to operate in the same spectrum bands, particularly in the unlicensed bands, resulting in coexistence. However, uncoordinated coexistence often leads to cases where collocated wireless systems experience heavy mutual interference. Hence, the development of spectrum sharing rules to mitigate the interference among wireless systems is a significant challenge considering the uncoordinated, heterogeneous systems. The requirement of spectrum sharing rules is tremendously increasing on the one hand to fulfill the current and future demand for wireless communication by the users, and on the other hand, to utilize the spectrum efficiently. In this thesis, contributions are provided towards dynamic and cognitive spectrum sharing with focus on the medium access control (MAC) layer, for uncoordinated scenarios of homogeneous and heterogeneous wireless networks, in a micro scale level, highlighting the QoS support for the applications. This thesis proposes a generic and novel spectrum sharing method based on a hypothesis: The regular channel occupation by one system can support other systems to predict the spectrum opportunities reliably. These opportunities then can be utilized efficiently, resulting in a fair spectrum sharing as well as an improving aggregated performance compared to the case without having special treatment. The developed method, denoted as Regular Channel Access (RCA), is modeled for systems specified by the wireless local resp. metropolitan area network standards IEEE 802.11 resp. 802.16. In the modeling, both systems are explored according to their respective centrally controlled channel access mechanisms and the adapted models are evaluated through simulation and results analysis. The conceptual model of spectrum sharing based on the distributed channel access mechanism of the IEEE 802.11 system is provided as well. To make the RCA method adaptive, the following enabling techniques are developed and integrated in the design: a RSS-based (Received Signal Strength based) detection method for measuring the channel occupation, a pattern recognition based algorithm for system identification, statistical knowledge based estimation for traffic demand estimation and an inference engine for reconfiguration of resource allocation as a response to traffic dynamics. The advantage of the RCA method is demonstrated, in which each competing collocated system is configured to have a resource allocation based on the estimated traffic demand of the systems. The simulation and the analysis of the results show a significant improvement in aggregated throughput, mean delay and packet loss ratio, compared to the case where legacy wireless systems coexists. The results from adaptive RCA show its resilience characteristics in case of dynamic traffic. The maximum achievable throughput between collocated IEEE 802.11 systems applying RCA is provided by means of mathematical calculation. The results of this thesis provide the basis for the development of resource allocation methods for future wireless networks particularly emphasized to operate in current unlicensed bands and in future models of the Open Spectrum Alliance

    LIPADE's Research Efforts Wireless Body Sensor Networks

    Get PDF
    • …
    corecore