137 research outputs found

    Optimal Behavior Planning for Autonomous Driving: A Generic Mixed-Integer Formulation

    Full text link
    Mixed-Integer Quadratic Programming (MIQP) has been identified as a suitable approach for finding an optimal solution to the behavior planning problem with low runtimes. Logical constraints and continuous equations are optimized alongside. However, it has only been formulated for a straight road, omitting common situations such as taking turns at intersections. This has prevented the model from being used in reality so far. Based on a triple integrator model formulation, we compute the orientation of the vehicle and model it in a disjunctive manner. That allows us to formulate linear constraints to account for the non-holonomy and collision avoidance. These constraints are approximations, for which we introduce the theory. We show the applicability in two benchmark scenarios and prove the feasibility by solving the same models using nonlinear optimization. This new model will allow researchers to leverage the benefits of MIQP, such as logical constraints, or global optimality.Comment: Published at IEEE Intelligent Vehicles Symposium (IV), 202

    Interaction-Aware Motion Planning for Automated Vehicles

    Get PDF
    Die Bewegungsplanung für automatisierte Fahrzeuge (AVs) in gemischtem Verkehr ist eine herausfordernde Aufgabe. Hierbei bezeichnet gemischter Verkehr, Verkehr bestehend aus von Menschen gefahrenen Fahrzeugen sowie automatisierten Fahrzeugen. Um die Komplexität der Aufgabe zu reduzieren, verwenden state-of-the-art Planungsansätze oft die vereinfachende Annahme, dass das zukünftige Verhalten umliegender Fahrzeuge unabhängig vom Plan des AVs vorhergesagt werden kann. Während die Trennung von Prädiktion und Planung für viele Verkehrssituationen eine hilfreiche Vereinfachung darstellt, werden hierbei Interaktionen zwischen den Verkehrsteilnehmern ignoriert, was besonders in interaktiven Verkehrssituationen zu suboptimalem, übermäßig konservativem Fahrverhalten führen kann. In dieser Arbeit werden zwei interaktionsbewusste Bewegungsplanungsalgorithmen vorgeschlagen, die in der Lage sind übermäßig konservatives Fahrverhalten zu reduzieren. Der Kernaspekt dieser Algorithmen ist, dass Prädiktion und Planung gleichzeitig gelöst werden. Mit diesen Algorithmen können anspruchsvolle Fahrmanöver, wie z. B. das Reißverschlussverfahren in dichtem Verkehr, durchgeführt werden, die mit state-of-the-art Planungsansätzen nicht möglich sind. Der erste Algorithmus basiert auf Methoden der Multi-Agenten-Planung. Interaktionen zwischen Verkehrsteilnehmern werden durch Optimierung gekoppelter Trajektorien mittels einer gemeinsamen Kostenfunktion approximiert. Das Kernstück des Algorithmus ist eine neuartige Multi-Agenten-Trajektorienplanungsformulierung, die auf gemischt-ganzzahliger quadratischer Programmierung (MIQP) basiert. Die Formulierung garantiert global optimale Lösungen und ist somit in der Lage das kombinatorische Problem zu lösen, welches kontinuierliche Methoden auf lokal optimale Lösungen beschränkt. Desweiteren kann durch den vorgestellten Ansatz ein manöverneutrales Verhalten erzeugt werden, das Manöverentscheidungen in ungewissen Situationen aufschieben kann. Der zweite Ansatz formuliert Interaktionen zwischen einem menschlichen Fahrer und einem AV als ein Stackelberg-Spiel. Im Gegensatz zu bestehenden Arbeiten kann der Algorithmus allgemeine nichtlineare Zustands- und Eingabebeschränkungen berücksichtigen. Desweiteren führen wir Mechanismen zur Integration von Kooperation und Rücksichtnahme in die Planung ein. Damit wird übermäßig aggressives Fahrverhalten verhindert, was in der Literatur als ein Problem interaktionsbewusster Planungsmethoden identifiziert wurde. Die Wirksamkeit, Robustheit und Echtzeitfähigkeit des Algorithmus wird durch numerische Experimente gezeigt

    An evolutionary algorithm for online, resource constrained, multi-vehicle sensing mission planning

    Full text link
    Mobile robotic platforms are an indispensable tool for various scientific and industrial applications. Robots are used to undertake missions whose execution is constrained by various factors, such as the allocated time or their remaining energy. Existing solutions for resource constrained multi-robot sensing mission planning provide optimal plans at a prohibitive computational complexity for online application [1],[2],[3]. A heuristic approach exists for an online, resource constrained sensing mission planning for a single vehicle [4]. This work proposes a Genetic Algorithm (GA) based heuristic for the Correlated Team Orienteering Problem (CTOP) that is used for planning sensing and monitoring missions for robotic teams that operate under resource constraints. The heuristic is compared against optimal Mixed Integer Quadratic Programming (MIQP) solutions. Results show that the quality of the heuristic solution is at the worst case equal to the 5% optimal solution. The heuristic solution proves to be at least 300 times more time efficient in the worst tested case. The GA heuristic execution required in the worst case less than a second making it suitable for online execution.Comment: 8 pages, 5 figures, accepted for publication in Robotics and Automation Letters (RA-L

    Decision-Making for Automated Vehicles Using a Hierarchical Behavior-Based Arbitration Scheme

    Full text link
    Behavior planning and decision-making are some of the biggest challenges for highly automated systems. A fully automated vehicle (AV) is confronted with numerous tactical and strategical choices. Most state-of-the-art AV platforms implement tactical and strategical behavior generation using finite state machines. However, these usually result in poor explainability, maintainability and scalability. Research in robotics has raised many architectures to mitigate these problems, most interestingly behavior-based systems and hybrid derivatives. Inspired by these approaches, we propose a hierarchical behavior-based architecture for tactical and strategical behavior generation in automated driving. It is a generalizing and scalable decision-making framework, utilizing modular behavior blocks to compose more complex behaviors in a bottom-up approach. The system is capable of combining a variety of scenario- and methodology-specific solutions, like POMDPs, RRT* or learning-based behavior, into one understandable and traceable architecture. We extend the hierarchical behavior-based arbitration concept to address scenarios where multiple behavior options are applicable but have no clear priority against each other. Then, we formulate the behavior generation stack for automated driving in urban and highway environments, incorporating parking and emergency behaviors as well. Finally, we illustrate our design in an explanatory evaluation

    A Computationally Efficient Bi-level Coordination Framework for CAVs at Unsignalized Intersections

    Full text link
    In this paper, we investigate cooperative vehicle coordination for connected and automated vehicles (CAVs) at unsignalized intersections. To support high traffic throughput while reducing computational complexity, we present a novel collision region model and decompose the optimal coordination problem into two sub-problems: \textit{centralized} priority scheduling and \textit{distributed} trajectory planning. Then, we propose a bi-level coordination framework which includes: (i) a Monte Carlo Tree Search (MCTS)-based high-level priority scheduler aims to find high-quality passing orders to maximize traffic throughput, and (ii) a priority-based low-level trajectory planner that generates optimal collision-free control inputs. Simulation results demonstrate that our bi-level strategy achieves near-optimal coordination performance, comparable to state-of-the-art centralized strategies, and significantly outperform the traffic signal control systems in terms of traffic throughput. Moreover, our approach exhibits good scalability, with computational complexity scaling linearly with the number of vehicles. Video demonstrations can be found online at \url{https://youtu.be/WYAKFMNnQfs}

    Fine-grained acceleration control for autonomous intersection management using deep reinforcement learning

    Full text link
    Recent advances in combining deep learning and Reinforcement Learning have shown a promising path for designing new control agents that can learn optimal policies for challenging control tasks. These new methods address the main limitations of conventional Reinforcement Learning methods such as customized feature engineering and small action/state space dimension requirements. In this paper, we leverage one of the state-of-the-art Reinforcement Learning methods, known as Trust Region Policy Optimization, to tackle intersection management for autonomous vehicles. We show that using this method, we can perform fine-grained acceleration control of autonomous vehicles in a grid street plan to achieve a global design objective.Comment: Accepted in IEEE Smart World Congress 201

    Optimisation-based coordination of connected, automated vehicles at intersections

    Get PDF
    In this paper, we analyse the performance of a model predictive controller for coordination of connected, automated vehicles at intersections. The problem has combinatorial complexity, and we propose to solve it approximately by using a two stage procedure where (1) the vehicle crossing order in which the vehicles cross the intersection is found by solving a mixed integer quadratic program and (2) the control commands are subsequently found by solving a nonlinear program. We show that the controller is persistently safe and compare its performance against traffic lights and two simpler optimisation-based coordination schemes. The results show that our approach outperforms the considered alternatives in terms of both energy consumption and travel-time delay, especially for medium to high traffic loads
    corecore