3 research outputs found

    Prioritized Multi-agent Path Finding for Differential Drive Robots

    Full text link
    Methods for centralized planning of the collision-free trajectories for a fleet of mobile robots typically solve the discretized version of the problem and rely on numerous simplifying assumptions, e.g. moves of uniform duration, cardinal only translations, equal speed and size of the robots etc., thus the resultant plans can not always be directly executed by the real robotic systems. To mitigate this issue we suggest a set of modifications to the prominent prioritized planner -- AA-SIPP(m) -- aimed at lifting the most restrictive assumptions (syncronized translation only moves, equal size and speed of the robots) and at providing robustness to the solutions. We evaluate the suggested algorithm in simulation and on differential drive robots in typical lab environment (indoor polygon with external video-based navigation system). The results of the evaluation provide a clear evidence that the algorithm scales well to large number of robots (up to hundreds in simulation) and is able to produce solutions that are safely executed by the robots prone to imperfect trajectory following. The video of the experiments can be found at https://youtu.be/Fer_irn4BG0.Comment: This is a pre-print version of the paper accepted to ECMR 2019 (https://ieeexplore.ieee.org/document/8870957

    Coordination of Multirobot Systems Under Temporal Constraints

    Full text link
    Multirobot systems have great potential to change our lives by increasing efficiency or decreasing costs in many applications, ranging from warehouse logistics to construction. They can also replace humans in dangerous scenarios, for example in a nuclear disaster cleanup mission. However, teleoperating robots in these scenarios would severely limit their capabilities due to communication and reaction delays. Furthermore, ensuring that the overall behavior of the system is safe and correct for a large number of robots is challenging without a principled solution approach. Ideally, multirobot systems should be able to plan and execute autonomously. Moreover, these systems should be robust to certain external factors, such as failing robots and synchronization errors and be able to scale to large numbers, as the effectiveness of particular tasks might depend directly on these criteria. This thesis introduces methods to achieve safe and correct autonomous behavior for multirobot systems. Firstly, we introduce a novel logic family, called counting logics, to describe the high-level behavior of multirobot systems. Counting logics capture constraints that arise naturally in many applications where the identity of the robot is not important for the task to be completed. We further introduce a notion of robust satisfaction to analyze the effects of synchronization errors on the overall behavior and provide complexity analysis for a fragment of this logic. Secondly, we propose an optimization-based algorithm to generate a collection of robot paths to satisfy the specifications given in counting logics. We assume that the robots are perfectly synchronized and use a mixed-integer linear programming formulation to take advantage of the recent advances in this field. We show that this approach is complete under the perfect synchronization assumption. Furthermore, we propose alternative encodings that render more efficient solutions under certain conditions. We also provide numerical results that showcase the scalability of our approach, showing that it scales to hundreds of robots. Thirdly, we relax the perfect synchronization assumption and show how to generate paths that are robust to bounded synchronization errors, without requiring run-time communication. However, the complexity of such an approach is shown to depend on the error bound, which might be limiting. To overcome this issue, we propose a hierarchical method whose complexity does not depend on this bound. We show that, under mild conditions, solutions generated by the hierarchical method can be executed safely, even if such a bound is not known. Finally, we propose a distributed algorithm to execute multirobot paths while avoiding collisions and deadlocks that might occur due to synchronization errors. We recast this problem as a conflict resolution problem and characterize conditions under which existing solutions to the well-known drinking philosophers problem can be used to design control policies that prevents collisions and deadlocks. We further provide improvements to this naive approach to increase the amount of concurrency in the system. We demonstrate the effectiveness of our approach by comparing it to the naive approach and to the state-of-the-art.PHDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/162921/1/ysahin_1.pd

    Cooperative Multi-Robot Sampling-Based Motion Planning with Dynamics

    No full text
    This paper develops an effective, cooperative, and probabilistically-complete multi-robot motion planner. The approach takes into account geometric and differential constraints imposed by the obstacles and the robot dynamics by using sampling to expand a motion tree in the composite state space of all the robots. Scalability and efficiency is achieved by using solutions to a simplified problem representation that does not take dynamics into account to guide the motion-tree expansion. The heuristic solutions are obtained by constructing roadmaps over low-dimensional configuration spaces and relying on cooperative multi-agent graph search to effectively find graph routes. Experimental results with second-order vehicle models operating in complex environments, where cooperation among the robots is required to find solutions, demonstrate significant improvements over related work
    corecore