477 research outputs found

    A high-throughput MAC protocol for wireless ad hoc networks

    Get PDF
    2005-2006 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe

    Large-scale educational telecommunications systems for the US: An analysis of educational needs and technological opportunities

    Get PDF
    The needs to be served, the subsectors in which the system might be used, the technology employed, and the prospects for future utilization of an educational telecommunications delivery system are described and analyzed. Educational subsectors are analyzed with emphasis on the current status and trends within each subsector. Issues which affect future development, and prospects for future use of media, technology, and large-scale electronic delivery within each subsector are included. Information on technology utilization is presented. Educational telecommunications services are identified and grouped into categories: public television and radio, instructional television, computer aided instruction, computer resource sharing, and information resource sharing. Technology based services, their current utilization, and factors which affect future development are stressed. The role of communications satellites in providing these services is discussed. Efforts to analyze and estimate future utilization of large-scale educational telecommunications are summarized. Factors which affect future utilization are identified. Conclusions are presented

    C-Band Airport Surface Communications System Standards Development. Phase II Final Report. Volume 1: Concepts of Use, Initial System Requirements, Architecture, and AeroMACS Design Considerations

    Get PDF
    This report is provided as part of ITT s NASA Glenn Research Center Aerospace Communication Systems Technical Support (ACSTS) contract NNC05CA85C, Task 7: New ATM Requirements-Future Communications, C-Band and L-Band Communications Standard Development and was based on direction provided by FAA project-level agreements for New ATM Requirements-Future Communications. Task 7 included two subtasks. Subtask 7-1 addressed C-band (5091- to 5150-MHz) airport surface data communications standards development, systems engineering, test bed and prototype development, and tests and demonstrations to establish operational capability for the Aeronautical Mobile Airport Communications System (AeroMACS). Subtask 7-2 focused on systems engineering and development support of the L-band digital aeronautical communications system (L-DACS). Subtask 7-1 consisted of two phases. Phase I included development of AeroMACS concepts of use, requirements, architecture, and initial high-level safety risk assessment. Phase II builds on Phase I results and is presented in two volumes. Volume I (this document) is devoted to concepts of use, system requirements, and architecture, including AeroMACS design considerations. Volume II describes an AeroMACS prototype evaluation and presents final AeroMACS recommendations. This report also describes airport categorization and channelization methodologies. The purposes of the airport categorization task were (1) to facilitate initial AeroMACS architecture designs and enable budgetary projections by creating a set of airport categories based on common airport characteristics and design objectives, and (2) to offer high-level guidance to potential AeroMACS technology and policy development sponsors and service providers. A channelization plan methodology was developed because a common global methodology is needed to assure seamless interoperability among diverse AeroMACS services potentially supplied by multiple service providers

    Price-Based Resource Allocation for Spectrum-Sharing Femtocell Networks: A Stackelberg Game Approach

    Full text link
    This paper investigates the price-based resource allocation strategies for the uplink transmission of a spectrum-sharing femtocell network, in which a central macrocell is underlaid with distributed femtocells, all operating over the same frequency band as the macrocell. Assuming that the macrocell base station (MBS) protects itself by pricing the interference from the femtocell users, a Stackelberg game is formulated to study the joint utility maximization of the macrocell and the femtocells subject to a maximum tolerable interference power constraint at the MBS. Especially, two practical femtocell channel models: sparsely deployed scenario for rural areas and densely deployed scenario for urban areas, are investigated. For each scenario, two pricing schemes: uniform pricing and non-uniform pricing, are proposed. Then, the Stackelberg equilibriums for these proposed games are studied, and an effective distributed interference price bargaining algorithm with guaranteed convergence is proposed for the uniform-pricing case. Finally, numerical examples are presented to verify the proposed studies. It is shown that the proposed algorithms are effective in resource allocation and macrocell protection requiring minimal network overhead for spectrum-sharing-based two-tier femtocell networks.Comment: 27 pages, 7 figures, Submitted to JSA

    C-Band Airport Surface Communications System Standards Development, Phase I

    Get PDF
    This document is being provided as part of ITT's NASA Glenn Research Center Aerospace Communication Systems Technical Support (ACSTS) contract NNC05CA85C, Task 7: "New ATM Requirements--Future Communications, C-Band and L-Band Communications Standard Development." The proposed future C-band (5091- to 5150-MHz) airport surface communication system, referred to as the Aeronautical Mobile Airport Communications System (AeroMACS), is anticipated to increase overall air-to-ground data communications systems capacity by using a new spectrum (i.e., not very high frequency (VHF)). Although some critical services could be supported, AeroMACS will also target noncritical services, such as weather advisory and aeronautical information services as part of an airborne System Wide Information Management (SWIM) program. AeroMACS is to be designed and implemented in a manner that will not disrupt other services operating in the C-band. This report defines the AeroMACS concepts of use, high-level system requirements, and architecture; the performance of supporting system analyses; the development of AeroMACS test and demonstration plans; and the establishment of an operational AeroMACS capability in support of C-band aeronautical data communications standards to be advanced in both international (International Civil Aviation Organization, ICAO) and national (RTCA) forums. This includes the development of system parameter profile recommendations for AeroMACS based on existing Institute of Electrical and Electronics Engineering (IEEE) 802.16e- 2009 standard

    Future of Datalink applications

    Get PDF
    Aircraft must fly in safe airspace and this safety is achieved thanks to the information that providers offer to air traffic control services. In the case of Spain, the service responsible for providing this information is ENAIRE. The growth of aviation from its first take-off to the present day has meant that the infrastructure necessary for safe development has had to undergo transformations. This is due to the fact that at the beginning, when this complex was created, traffic density was not as high as it is today. Aware of the need for improvement, the International Civil Aviation Organisation (ICAO) set up the FANS ("Future Air Navigation Services") committee in the early 1980s. This board, after a decade of studies and several meetings, concluded that they had to change the concept of voice-based aeronautical communication to an exchange of information via data link. This idea was called CNS/ATM (Communications, Navigation, Surveillance / Air Traffic Management) and this technology was intended to automate air traffic management and optimise it in order to support the growing demand worldwide. The aim of this thesis is to reach as many users as possible who are interested in this technology applied to the world of aviation. This project consists of three main parts, the first one will consist of the explanation of how the ANS (Air Navigation Services) world works and the organisation behind ICAO. Once this topic has been dealt with, the second and most important part, which will deal with data link, will follow. Here data link, its applications in the aerospace sector and its different technologies will be explained. Finally, the future of these technologies will be discussed and a bet will be made on which one will predominate over the others

    Aircraft to operations communication analysis and architecture for the future aviation environment

    Get PDF
    Fifth Generation (5G) systems are envisaged to support a wide range of applications scenarios with varying requirements. 5G architecture includes network slicing abilities which facilitate the partitioning of a single network infrastructure on to multiple logical networks, each tailored to a given use case, providing appropriate isolation and Quality of Service (QoS) characteristics. Radio Access Network (RAN) slicing is key to ensuring appropriate QoS over multiple domains; achieved via the configuration of multiple RAN behaviours over a common pool of radio resources. This Paper proposes a novel solution for efficient resource allocation and assignment among a variety of heterogeneous services, to utilize the resources while ensuring maximum QoS for network services. First, this paper evaluates the effectiveness of different wireless data bearers. Secondly, the paper proposes a novel dynamic resource allocation algorithm for RAN slicing within 5G New Radio (NR) networks utilising cooperative game theory combined with priority-based bargaining. The impact of this work to industry is to provide a new technique for resource allocation that utilizes cooperative bargaining to ensure all network services achieve minimum QoS requirements – while using application priority to reduce data transfer time for key services to facilitate decreased turnaround time at the gate

    Revision of QoS Guarantees at the Application/Network Interface

    Get PDF
    Connection management based on Quality of Service (QoS) offers opportunities for better resource allocation in networks providing service classes. Negotiation describes the process of cooperatively configuring application and network resources for an application\u27s use. Complex and long-running applications can reduce the inefficiencies of static allocations by splitting resource use into eras bounded by renegotiation of QoS parameters. Renegotiation can be driven by either the application or the network in order to best match application and network dynamics. A key element in this process is a translation between differing perspectives on QoS maintained by applications and network service provision. We model translation with an entity called a broker
    corecore