1 research outputs found

    A novel approach to MISO interference networks under maximum receive-power regulation

    Get PDF
    An aggressive frequency reuse is expected within the next years in order to increase the spectral ef¿ciency. Multiuser interference by all in-band transmitters can create a communication bottleneck and, therefore, it is compulsory to control it by means of radiated power regulations. In this work we consider received power as the main way to properly measure radiated power, serving at the same time as a spectrum sharing mechanism. Taking into account the constraints on the maximum total receive-power and maximum transmit-power, we ¿rst obtain the transmit powers that attain the Pareto-ef¿cient rates in an uncoordinated network. Among these rates, we identify the maximum sum-rate point for noise-limited scenarios. Next, in order to reach this working point using as less power as possible, we design a novel beamformer under some practical considerations. This beamformer can be calculated in a non-iterative and distributed fashion (i.e. transmitters do not need to exchange information). We evaluateour designby meansof Monte Carlosimulations, compare it with other non-iterative transmit beam formers and show its superior performance when the spectrum sharing receive-power constraints are imposed.Peer ReviewedPostprint (published version
    corecore