3,346 research outputs found

    Fundamental Limits in Correlated Fading MIMO Broadcast Channels: Benefits of Transmit Correlation Diversity

    Full text link
    We investigate asymptotic capacity limits of the Gaussian MIMO broadcast channel (BC) with spatially correlated fading to understand when and how much transmit correlation helps the capacity. By imposing a structure on channel covariances (equivalently, transmit correlations at the transmitter side) of users, also referred to as \emph{transmit correlation diversity}, the impact of transmit correlation on the power gain of MIMO BCs is characterized in several regimes of system parameters, with a particular interest in the large-scale array (or massive MIMO) regime. Taking the cost for downlink training into account, we provide asymptotic capacity bounds of multiuser MIMO downlink systems to see how transmit correlation diversity affects the system multiplexing gain. We make use of the notion of joint spatial division and multiplexing (JSDM) to derive the capacity bounds. It is advocated in this paper that transmit correlation diversity may be of use to significantly increase multiplexing gain as well as power gain in multiuser MIMO systems. In particular, the new type of diversity in wireless communications is shown to improve the system multiplexing gain up to by a factor of the number of degrees of such diversity. Finally, performance limits of conventional large-scale MIMO systems not exploiting transmit correlation are also characterized.Comment: 29 pages, 8 figure

    Optimal Cooperative MAC Protocol with Efficient Selection of Relay Terminals

    Get PDF
    A new cooperative protocol is proposed in the context of wireless mesh networks. The protocol implements ondemand cooperation, i.e. cooperation between a source terminal and a destination terminal is activated only when needed. In that case, only the best relay among a set of available terminals is re-transmitting the source message to the destination terminal. This typical approach is improved using three additional features. First, a splitting algorithm is implemented to select the best relay. This ensures a fast selection process. Moreover, the duration of the selection process is now completely characterized. Second, only terminals that improve the outage probability of the direct link are allowed to participate to the relay selection. By this means, inefficient cooperation is now avoided. Finally, the destination terminal discards the source message when it fails to decode it. This saves processing time since the destination terminal does not need to combine the replicas of the source message: the one from the source terminal and the one from the best relay. We prove that the proposed protocol achieves an optimal performance in terms of Diversity-Multiplexing Tradeoff (DMT)

    DMT Optimal Cooperative Protocols with Destination-Based Selection of the Best Relay

    Get PDF
    We design a cooperative protocol in the context of wireless mesh networks in order to increase the reliability of wireless links. Destination terminals ask for cooperation when they fail in decoding data frames transmitted by source terminals. In that case, each destination terminal D calls a specific relay terminal B with a signaling frame to help its transmission with source terminal S. To select appropriate relays, destination terminals maintain tables of relay terminals, one for each possible source address. These tables are constituted by passively overhearing ongoing transmissions. Hence, when cooperation is needed between S and D, and when a relay B is found by terminal D in the relay table associated with terminal S, the destination terminal sends a negative acknowledgment frame that contains the address of B. When the best relay B has successfully decoded the source message, it sends a copy of the data frame to D using a selective decode-andforward transmission scheme. The on-demand approach allows maximization of the spatial multiplexing gain and the cooperation of the best relay allows maximization of the spatial diversity order. Hence, the proposed protocol achieves optimal diversitymultiplexing trade-off performance. Moreover, this performance is achieved through a collision-free selection process

    On-Demand Cooperation MAC Protocols with Optimal Diversity-Multiplexing Tradeoff

    Get PDF
    This paper presents access protocols with optimal Diversity-Multiplexing Tradeoff (DMT) performance in the context of IEEE 802.11-based mesh networks. The protocols are characterized by two main features: on-demand cooperation and selection of the best relay terminal. The on-demand characteristic refers to the ability of a destination terminal to ask for cooperation when it fails in decoding the message transmitted by a source terminal. This approach allows maximization of the spatial multiplexing gain. The selection of the best relay terminal allows maximization of the diversity order. Hence, the optimal DMT curve is achieved with these protocols

    DMT Optimal On-Demand Relaying for Mesh Networks

    Get PDF
    This paper presents a new cooperative MAC (Medium Access Control) protocol called BRIAF (Best Relay based Incremental Amplify-and-Forward). The proposed protocol presents two features: on-demand relaying and selection of the best relay terminal. “On-demand relaying” means that a cooperative transmission is implemented between a source terminal and a destination terminal only when the destination terminal fails in decoding the data transmitted by the source terminal. This feature maximizes the spatial multiplexing gain r of the transmission. “Selection of the best relay terminal” means that a selection of the best relay among a set of (m-1) relay candidates is implemented when a cooperative transmission is needed. This feature maximizes the diversity order d(r) of the transmission. Hence, an optimal DMT (Diversity Multiplexing Tradeoff) curve is achieved with a diversity order d(r) = m(1-r) for 0 ≀ r ≀ 1

    Achieving Large Multiplexing Gain in Distributed Antenna Systems via Cooperation with pCell Technology

    Full text link
    In this paper we present pCellTM technology, the first commercial-grade wireless system that employs cooperation between distributed transceiver stations to create concurrent data links to multiple users in the same spectrum. First we analyze the per-user signal-to-interference-plus-noise ratio (SINR) employing a geometrical spatial channel model to define volumes in space of coherent signal around user antennas (or personal cells, i.e., pCells). Then we describe the system architecture consisting of a general-purpose-processor (GPP) based software-defined radio (SDR) wireless platform implementing a real-time LTE protocol stack to communicate with off-the-shelf LTE devices. Finally we present experimental results demonstrating up to 16 concurrent spatial channels for an aggregate average spectral efficiency of 59.3 bps/Hz in the downlink and 27.5 bps/Hz in the uplink, providing data rates of 200 Mbps downlink and 25 Mbps uplink in 5 MHz of TDD spectrum.Comment: IEEE Asilomar Conference on Signals, Systems, and Computers, Nov. 8-11th 2015, Pacific Grove, CA, US

    Millimeter Wave Cellular Networks: A MAC Layer Perspective

    Full text link
    The millimeter wave (mmWave) frequency band is seen as a key enabler of multi-gigabit wireless access in future cellular networks. In order to overcome the propagation challenges, mmWave systems use a large number of antenna elements both at the base station and at the user equipment, which lead to high directivity gains, fully-directional communications, and possible noise-limited operations. The fundamental differences between mmWave networks and traditional ones challenge the classical design constraints, objectives, and available degrees of freedom. This paper addresses the implications that highly directional communication has on the design of an efficient medium access control (MAC) layer. The paper discusses key MAC layer issues, such as synchronization, random access, handover, channelization, interference management, scheduling, and association. The paper provides an integrated view on MAC layer issues for cellular networks, identifies new challenges and tradeoffs, and provides novel insights and solution approaches.Comment: 21 pages, 9 figures, 2 tables, to appear in IEEE Transactions on Communication
    • 

    corecore