42,476 research outputs found

    FAIR: Forwarding Accountability for Internet Reputability

    Full text link
    This paper presents FAIR, a forwarding accountability mechanism that incentivizes ISPs to apply stricter security policies to their customers. The Autonomous System (AS) of the receiver specifies a traffic profile that the sender AS must adhere to. Transit ASes on the path mark packets. In case of traffic profile violations, the marked packets are used as a proof of misbehavior. FAIR introduces low bandwidth overhead and requires no per-packet and no per-flow state for forwarding. We describe integration with IP and demonstrate a software switch running on commodity hardware that can switch packets at a line rate of 120 Gbps, and can forward 140M minimum-sized packets per second, limited by the hardware I/O subsystem. Moreover, this paper proposes a "suspicious bit" for packet headers - an application that builds on top of FAIR's proofs of misbehavior and flags packets to warn other entities in the network.Comment: 16 pages, 12 figure

    Cooperation with Defection

    Get PDF
    The Prisoner Dilemma is a typical structure of interaction in human societies. In spite of a long tradition dealing with the matter from different perspectives, the emergence of cooperation or defection still remains a controversial argument from both empirical and theoretical point of views. In this paper an innovative model is presented and analyzed in the attempt to provide a reasonable framing of the issue. A population of boundedly rational agents repeatedly chooses to cooperate or defect. Each agent’s action affects only her interacting mates, according to a network of relationships which is endogenously modifiable since agents are given the possibility to substitute undesired mates with unknown ones. Full cooperation, full defection and coexistence of both cooperation and defection in homogeneous clusters are possible outcomes of the model. A computer program is developed with the purpose of understanding the impact of parameters values on the type of outcome. Numerous simulations are run and the resulting evidence is analyzed and interpretedPrisoner Dilemma; cooperation; segregation; networks; simulation

    A Simple Cooperative Diversity Method Based on Network Path Selection

    Full text link
    Cooperative diversity has been recently proposed as a way to form virtual antenna arrays that provide dramatic gains in slow fading wireless environments. However most of the proposed solutions require distributed space-time coding algorithms, the careful design of which is left for future investigation if there is more than one cooperative relay. We propose a novel scheme, that alleviates these problems and provides diversity gains on the order of the number of relays in the network. Our scheme first selects the best relay from a set of M available relays and then uses this best relay for cooperation between the source and the destination. We develop and analyze a distributed method to select the best relay that requires no topology information and is based on local measurements of the instantaneous channel conditions. This method also requires no explicit communication among the relays. The success (or failure) to select the best available path depends on the statistics of the wireless channel, and a methodology to evaluate performance for any kind of wireless channel statistics, is provided. Information theoretic analysis of outage probability shows that our scheme achieves the same diversity-multiplexing tradeoff as achieved by more complex protocols, where coordination and distributed space-time coding for M nodes is required, such as those proposed in [7]. The simplicity of the technique, allows for immediate implementation in existing radio hardware and its adoption could provide for improved flexibility, reliability and efficiency in future 4G wireless systems.Comment: To appear, IEEE JSAC, special issue on 4

    Short-run vs. long-run cooperation among the G-20 countries

    Get PDF
    In a model of repeated games, we determine the conditions under which cooperation is an equilibrium outcome among the G-20 countries. We consider first, that members are uncertain about the lifespan of the G-20. Second, the nature of member countries and their interrelations can change because of shifts in government regimes. Monitoring and peer pressure to comply with the agreements made are necessary if the goals are to achieve cooperation and thereby attain desirable common goals. If member countries are prone to shifting government regimes and governments are not concerned about their countries' reputations, continuous cooperation becomes more difficult.Repeated games, Prisoners’ Dilemma, cooperation, monitoring, reputation

    Observation-based Cooperation Enforcement in Ad Hoc Networks

    Full text link
    Ad hoc networks rely on the cooperation of the nodes participating in the network to forward packets for each other. A node may decide not to cooperate to save its resources while still using the network to relay its traffic. If too many nodes exhibit this behavior, network performance degrades and cooperating nodes may find themselves unfairly loaded. Most previous efforts to counter this behavior have relied on further cooperation between nodes to exchange reputation information about other nodes. If a node observes another node not participating correctly, it reports this observation to other nodes who then take action to avoid being affected and potentially punish the bad node by refusing to forward its traffic. Unfortunately, such second-hand reputation information is subject to false accusations and requires maintaining trust relationships with other nodes. The objective of OCEAN is to avoid this trust-management machinery and see how far we can get simply by using direct first-hand observations of other nodes' behavior. We find that, in many scenarios, OCEAN can do as well as, or even better than, schemes requiring second-hand reputation exchanges. This encouraging result could possibly help obviate solutions requiring trust-management for some contexts.Comment: 10 pages, 7 figure

    Spatial SINR Games of Base Station Placement and Mobile Association

    Full text link
    We study the question of determining locations of base stations that may belong to the same or to competing service providers. We take into account the impact of these decisions on the behavior of intelligent mobile terminals who can connect to the base station that offers the best utility. The signal to interference and noise ratio is used as the quantity that determines the association. We first study the SINR association-game: we determine the cells corresponding to each base stations, i.e., the locations at which mobile terminals prefer to connect to a given base station than to others. We make some surprising observations: (i) displacing a base station a little in one direction may result in a displacement of the boundary of the corresponding cell to the opposite direction; (ii) A cell corresponding to a BS may be the union of disconnected sub-cells. We then study the hierarchical equilibrium in the combined BS location and mobile association problem: we determine where to locate the BSs so as to maximize the revenues obtained at the induced SINR mobile association game. We consider the cases of single frequency band and two frequency bands of operation. Finally, we also consider hierarchical equilibria in two frequency systems with successive interference cancellation

    Dynamic Policies for Cooperative Networked Systems

    Full text link
    A set of economic entities embedded in a network graph collaborate by opportunistically exchanging their resources to satisfy their dynamically generated needs. Under what conditions their collaboration leads to a sustainable economy? Which online policy can ensure a feasible resource exchange point will be attained, and what information is needed to implement it? Furthermore, assuming there are different resources and the entities have diverse production capabilities, which production policy each entity should employ in order to maximize the economy's sustainability? Importantly, can we design such policies that are also incentive compatible even when there is no a priori information about the entities' needs? We introduce a dynamic production scheduling and resource exchange model to capture this fundamental problem and provide answers to the above questions. Applications range from infrastructure sharing, trade and organisation management, to social networks and sharing economy services.Comment: 6-page version appeared at ACM NetEcon' 1
    corecore