15 research outputs found

    Sparse Power Factorization: Balancing peakiness and sample complexity

    Full text link
    In many applications, one is faced with an inverse problem, where the known signal depends in a bilinear way on two unknown input vectors. Often at least one of the input vectors is assumed to be sparse, i.e., to have only few non-zero entries. Sparse Power Factorization (SPF), proposed by Lee, Wu, and Bresler, aims to tackle this problem. They have established recovery guarantees for a somewhat restrictive class of signals under the assumption that the measurements are random. We generalize these recovery guarantees to a significantly enlarged and more realistic signal class at the expense of a moderately increased number of measurements.Comment: 18 page

    Implicit Regularization in Nonconvex Statistical Estimation: Gradient Descent Converges Linearly for Phase Retrieval, Matrix Completion, and Blind Deconvolution

    Full text link
    Recent years have seen a flurry of activities in designing provably efficient nonconvex procedures for solving statistical estimation problems. Due to the highly nonconvex nature of the empirical loss, state-of-the-art procedures often require proper regularization (e.g. trimming, regularized cost, projection) in order to guarantee fast convergence. For vanilla procedures such as gradient descent, however, prior theory either recommends highly conservative learning rates to avoid overshooting, or completely lacks performance guarantees. This paper uncovers a striking phenomenon in nonconvex optimization: even in the absence of explicit regularization, gradient descent enforces proper regularization implicitly under various statistical models. In fact, gradient descent follows a trajectory staying within a basin that enjoys nice geometry, consisting of points incoherent with the sampling mechanism. This "implicit regularization" feature allows gradient descent to proceed in a far more aggressive fashion without overshooting, which in turn results in substantial computational savings. Focusing on three fundamental statistical estimation problems, i.e. phase retrieval, low-rank matrix completion, and blind deconvolution, we establish that gradient descent achieves near-optimal statistical and computational guarantees without explicit regularization. In particular, by marrying statistical modeling with generic optimization theory, we develop a general recipe for analyzing the trajectories of iterative algorithms via a leave-one-out perturbation argument. As a byproduct, for noisy matrix completion, we demonstrate that gradient descent achieves near-optimal error control --- measured entrywise and by the spectral norm --- which might be of independent interest.Comment: accepted to Foundations of Computational Mathematics (FOCM

    Uncertainty quantification for nonconvex tensor completion: Confidence intervals, heteroscedasticity and optimality

    Full text link
    We study the distribution and uncertainty of nonconvex optimization for noisy tensor completion -- the problem of estimating a low-rank tensor given incomplete and corrupted observations of its entries. Focusing on a two-stage estimation algorithm proposed by Cai et al. (2019), we characterize the distribution of this nonconvex estimator down to fine scales. This distributional theory in turn allows one to construct valid and short confidence intervals for both the unseen tensor entries and the unknown tensor factors. The proposed inferential procedure enjoys several important features: (1) it is fully adaptive to noise heteroscedasticity, and (2) it is data-driven and automatically adapts to unknown noise distributions. Furthermore, our findings unveil the statistical optimality of nonconvex tensor completion: it attains un-improvable â„“2\ell_{2} accuracy -- including both the rates and the pre-constants -- when estimating both the unknown tensor and the underlying tensor factors.Comment: Accepted in part to ICML 202
    corecore