170 research outputs found

    Deep Convolutional Neural Network to Detect J-UNIWARD

    Full text link
    This paper presents an empirical study on applying convolutional neural networks (CNNs) to detecting J-UNIWARD, one of the most secure JPEG steganographic method. Experiments guiding the architectural design of the CNNs have been conducted on the JPEG compressed BOSSBase containing 10,000 covers of size 512x512. Results have verified that both the pooling method and the depth of the CNNs are critical for performance. Results have also proved that a 20-layer CNN, in general, outperforms the most sophisticated feature-based methods, but its advantage gradually diminishes on hard-to-detect cases. To show that the performance generalizes to large-scale databases and to different cover sizes, one experiment has been conducted on the CLS-LOC dataset of ImageNet containing more than one million covers cropped to unified size of 256x256. The proposed 20-layer CNN has cut the error achieved by a CNN recently proposed for large-scale JPEG steganalysis by 35%. Source code is available via GitHub: https://github.com/GuanshuoXu/deep_cnn_jpeg_steganalysisComment: Accepted by IH&MMSec 2017. This is a personal cop

    Recasting Residual-based Local Descriptors as Convolutional Neural Networks: an Application to Image Forgery Detection

    Full text link
    Local descriptors based on the image noise residual have proven extremely effective for a number of forensic applications, like forgery detection and localization. Nonetheless, motivated by promising results in computer vision, the focus of the research community is now shifting on deep learning. In this paper we show that a class of residual-based descriptors can be actually regarded as a simple constrained convolutional neural network (CNN). Then, by relaxing the constraints, and fine-tuning the net on a relatively small training set, we obtain a significant performance improvement with respect to the conventional detector

    Aligned and Non-Aligned Double JPEG Detection Using Convolutional Neural Networks

    Full text link
    Due to the wide diffusion of JPEG coding standard, the image forensic community has devoted significant attention to the development of double JPEG (DJPEG) compression detectors through the years. The ability of detecting whether an image has been compressed twice provides paramount information toward image authenticity assessment. Given the trend recently gained by convolutional neural networks (CNN) in many computer vision tasks, in this paper we propose to use CNNs for aligned and non-aligned double JPEG compression detection. In particular, we explore the capability of CNNs to capture DJPEG artifacts directly from images. Results show that the proposed CNN-based detectors achieve good performance even with small size images (i.e., 64x64), outperforming state-of-the-art solutions, especially in the non-aligned case. Besides, good results are also achieved in the commonly-recognized challenging case in which the first quality factor is larger than the second one.Comment: Submitted to Journal of Visual Communication and Image Representation (first submission: March 20, 2017; second submission: August 2, 2017

    Distinguishing Computer-generated Graphics from Natural Images Based on Sensor Pattern Noise and Deep Learning

    Full text link
    Computer-generated graphics (CGs) are images generated by computer software. The~rapid development of computer graphics technologies has made it easier to generate photorealistic computer graphics, and these graphics are quite difficult to distinguish from natural images (NIs) with the naked eye. In this paper, we propose a method based on sensor pattern noise (SPN) and deep learning to distinguish CGs from NIs. Before being fed into our convolutional neural network (CNN)-based model, these images---CGs and NIs---are clipped into image patches. Furthermore, three high-pass filters (HPFs) are used to remove low-frequency signals, which represent the image content. These filters are also used to reveal the residual signal as well as SPN introduced by the digital camera device. Different from the traditional methods of distinguishing CGs from NIs, the proposed method utilizes a five-layer CNN to classify the input image patches. Based on the classification results of the image patches, we deploy a majority vote scheme to obtain the classification results for the full-size images. The~experiments have demonstrated that (1) the proposed method with three HPFs can achieve better results than that with only one HPF or no HPF and that (2) the proposed method with three HPFs achieves 100\% accuracy, although the NIs undergo a JPEG compression with a quality factor of 75.Comment: This paper has been published by Sensors. doi:10.3390/s18041296; Sensors 2018, 18(4), 129

    Analysis of adversarial attacks against CNN-based image forgery detectors

    Full text link
    With the ubiquitous diffusion of social networks, images are becoming a dominant and powerful communication channel. Not surprisingly, they are also increasingly subject to manipulations aimed at distorting information and spreading fake news. In recent years, the scientific community has devoted major efforts to contrast this menace, and many image forgery detectors have been proposed. Currently, due to the success of deep learning in many multimedia processing tasks, there is high interest towards CNN-based detectors, and early results are already very promising. Recent studies in computer vision, however, have shown CNNs to be highly vulnerable to adversarial attacks, small perturbations of the input data which drive the network towards erroneous classification. In this paper we analyze the vulnerability of CNN-based image forensics methods to adversarial attacks, considering several detectors and several types of attack, and testing performance on a wide range of common manipulations, both easily and hardly detectable
    • …
    corecore