167 research outputs found

    Convolutional Kernel Networks

    Get PDF
    An important goal in visual recognition is to devise image representations that are invariant to particular transformations. In this paper, we address this goal with a new type of convolutional neural network (CNN) whose invariance is encoded by a reproducing kernel. Unlike traditional approaches where neural networks are learned either to represent data or for solving a classification task, our network learns to approximate the kernel feature map on training data. Such an approach enjoys several benefits over classical ones. First, by teaching CNNs to be invariant, we obtain simple network architectures that achieve a similar accuracy to more complex ones, while being easy to train and robust to overfitting. Second, we bridge a gap between the neural network literature and kernels, which are natural tools to model invariance. We evaluate our methodology on visual recognition tasks where CNNs have proven to perform well, e.g., digit recognition with the MNIST dataset, and the more challenging CIFAR-10 and STL-10 datasets, where our accuracy is competitive with the state of the art.Comment: appears in Advances in Neural Information Processing Systems (NIPS), Dec 2014, Montreal, Canada, http://nips.c

    End-to-End Kernel Learning with Supervised Convolutional Kernel Networks

    Get PDF
    In this paper, we introduce a new image representation based on a multilayer kernel machine. Unlike traditional kernel methods where data representation is decoupled from the prediction task, we learn how to shape the kernel with supervision. We proceed by first proposing improvements of the recently-introduced convolutional kernel networks (CKNs) in the context of unsupervised learning; then, we derive backpropagation rules to take advantage of labeled training data. The resulting model is a new type of convolutional neural network, where optimizing the filters at each layer is equivalent to learning a linear subspace in a reproducing kernel Hilbert space (RKHS). We show that our method achieves reasonably competitive performance for image classification on some standard "deep learning" datasets such as CIFAR-10 and SVHN, and also for image super-resolution, demonstrating the applicability of our approach to a large variety of image-related tasks.Comment: to appear in Advances in Neural Information Processing Systems (NIPS

    Convolutional Kernel Networks for Graph-Structured Data

    Get PDF
    We introduce a family of multilayer graph kernels and establish new links between graph convolutional neural networks and kernel methods. Our approach generalizes convolutional kernel networks to graph-structured data, by representing graphs as a sequence of kernel feature maps, where each node carries information about local graph substructures. On the one hand, the kernel point of view offers an unsupervised, expressive, and easy-to-regularize data representation, which is useful when limited samples are available. On the other hand, our model can also be trained end-to-end on large-scale data, leading to new types of graph convolutional neural networks. We show that our method achieves competitive performance on several graph classification benchmarks, while offering simple model interpretation. Our code is freely available at https://github.com/claying/GCKN

    Group Invariance, Stability to Deformations, and Complexity of Deep Convolutional Representations

    Get PDF
    The success of deep convolutional architectures is often attributed in part to their ability to learn multiscale and invariant representations of natural signals. However, a precise study of these properties and how they affect learning guarantees is still missing. In this paper, we consider deep convolutional representations of signals; we study their invariance to translations and to more general groups of transformations, their stability to the action of diffeomorphisms, and their ability to preserve signal information. This analysis is carried by introducing a multilayer kernel based on convolutional kernel networks and by studying the geometry induced by the kernel mapping. We then characterize the corresponding reproducing kernel Hilbert space (RKHS), showing that it contains a large class of convolutional neural networks with homogeneous activation functions. This analysis allows us to separate data representation from learning, and to provide a canonical measure of model complexity, the RKHS norm, which controls both stability and generalization of any learned model. In addition to models in the constructed RKHS, our stability analysis also applies to convolutional networks with generic activations such as rectified linear units, and we discuss its relationship with recent generalization bounds based on spectral norms

    DeepKSPD: Learning Kernel-matrix-based SPD Representation for Fine-grained Image Recognition

    Full text link
    Being symmetric positive-definite (SPD), covariance matrix has traditionally been used to represent a set of local descriptors in visual recognition. Recent study shows that kernel matrix can give considerably better representation by modelling the nonlinearity in the local descriptor set. Nevertheless, neither the descriptors nor the kernel matrix is deeply learned. Worse, they are considered separately, hindering the pursuit of an optimal SPD representation. This work proposes a deep network that jointly learns local descriptors, kernel-matrix-based SPD representation, and the classifier via an end-to-end training process. We derive the derivatives for the mapping from a local descriptor set to the SPD representation to carry out backpropagation. Also, we exploit the Daleckii-Krein formula in operator theory to give a concise and unified result on differentiating SPD matrix functions, including the matrix logarithm to handle the Riemannian geometry of kernel matrix. Experiments not only show the superiority of kernel-matrix-based SPD representation with deep local descriptors, but also verify the advantage of the proposed deep network in pursuing better SPD representations for fine-grained image recognition tasks

    Biological Sequence Modeling with Convolutional Kernel Networks

    Get PDF
    International audienc

    Convolutional Kernel Networks for Graph-Structured Data

    Get PDF
    International audienceWe introduce a family of multilayer graph kernels and establish new links between graph convolutional neural networks and kernel methods. Our approach generalizes convolutional kernel networks to graph-structured data, by representing graphs as a sequence of kernel feature maps, where each node carries information about local graph substructures. On the one hand, the kernel point of view offers an unsupervised, expressive, and easy-to-regularize data representation, which is useful when limited samples are available. On the other hand, our model can also be trained end-to-end on large-scale data, leading to new types of graph convolutional neural networks. We show that our method achieves competitive performance on several graph classification benchmarks, while offering simple model interpretation. Our code is freely available at https://github.com/claying/GCKN

    Deep Dictionary Learning: A PARametric NETwork Approach

    Full text link
    Deep dictionary learning seeks multiple dictionaries at different image scales to capture complementary coherent characteristics. We propose a method for learning a hierarchy of synthesis dictionaries with an image classification goal. The dictionaries and classification parameters are trained by a classification objective, and the sparse features are extracted by reducing a reconstruction loss in each layer. The reconstruction objectives in some sense regularize the classification problem and inject source signal information in the extracted features. The performance of the proposed hierarchical method increases by adding more layers, which consequently makes this model easier to tune and adapt. The proposed algorithm furthermore, shows remarkably lower fooling rate in presence of adversarial perturbation. The validation of the proposed approach is based on its classification performance using four benchmark datasets and is compared to a CNN of similar size
    • …
    corecore