9,791 research outputs found

    A Genetic Programming Approach to Designing Convolutional Neural Network Architectures

    Full text link
    The convolutional neural network (CNN), which is one of the deep learning models, has seen much success in a variety of computer vision tasks. However, designing CNN architectures still requires expert knowledge and a lot of trial and error. In this paper, we attempt to automatically construct CNN architectures for an image classification task based on Cartesian genetic programming (CGP). In our method, we adopt highly functional modules, such as convolutional blocks and tensor concatenation, as the node functions in CGP. The CNN structure and connectivity represented by the CGP encoding method are optimized to maximize the validation accuracy. To evaluate the proposed method, we constructed a CNN architecture for the image classification task with the CIFAR-10 dataset. The experimental result shows that the proposed method can be used to automatically find the competitive CNN architecture compared with state-of-the-art models.Comment: This is the revised version of the GECCO 2017 paper. The code of our method is available at https://github.com/sg-nm/cgp-cn

    Optimizing Neural Architecture Search using Limited GPU Time in a Dynamic Search Space: A Gene Expression Programming Approach

    Full text link
    Efficient identification of people and objects, segmentation of regions of interest and extraction of relevant data in images, texts, audios and videos are evolving considerably in these past years, which deep learning methods, combined with recent improvements in computational resources, contributed greatly for this achievement. Although its outstanding potential, development of efficient architectures and modules requires expert knowledge and amount of resource time available. In this paper, we propose an evolutionary-based neural architecture search approach for efficient discovery of convolutional models in a dynamic search space, within only 24 GPU hours. With its efficient search environment and phenotype representation, Gene Expression Programming is adapted for network's cell generation. Despite having limited GPU resource time and broad search space, our proposal achieved similar state-of-the-art to manually-designed convolutional networks and also NAS-generated ones, even beating similar constrained evolutionary-based NAS works. The best cells in different runs achieved stable results, with a mean error of 2.82% in CIFAR-10 dataset (which the best model achieved an error of 2.67%) and 18.83% for CIFAR-100 (best model with 18.16%). For ImageNet in the mobile setting, our best model achieved top-1 and top-5 errors of 29.51% and 10.37%, respectively. Although evolutionary-based NAS works were reported to require a considerable amount of GPU time for architecture search, our approach obtained promising results in little time, encouraging further experiments in evolutionary-based NAS, for search and network representation improvements.Comment: Accepted for presentation at the IEEE Congress on Evolutionary Computation (IEEE CEC) 202

    A Hybrid Differential Evolution Approach to Designing Deep Convolutional Neural Networks for Image Classification

    Full text link
    Convolutional Neural Networks (CNNs) have demonstrated their superiority in image classification, and evolutionary computation (EC) methods have recently been surging to automatically design the architectures of CNNs to save the tedious work of manually designing CNNs. In this paper, a new hybrid differential evolution (DE) algorithm with a newly added crossover operator is proposed to evolve the architectures of CNNs of any lengths, which is named DECNN. There are three new ideas in the proposed DECNN method. Firstly, an existing effective encoding scheme is refined to cater for variable-length CNN architectures; Secondly, the new mutation and crossover operators are developed for variable-length DE to optimise the hyperparameters of CNNs; Finally, the new second crossover is introduced to evolve the depth of the CNN architectures. The proposed algorithm is tested on six widely-used benchmark datasets and the results are compared to 12 state-of-the-art methods, which shows the proposed method is vigorously competitive to the state-of-the-art algorithms. Furthermore, the proposed method is also compared with a method using particle swarm optimisation with a similar encoding strategy named IPPSO, and the proposed DECNN outperforms IPPSO in terms of the accuracy.Comment: Accepted by The Australasian Joint Conference on Artificial Intelligence 201

    Neural Network Guided Evolution of L-system Plants

    Get PDF
    A Lindenmayer system is a parallel rewriting system that generates graphic shapes using several rules. Genetic programming (GP) is an evolutionary algorithm that evolves expressions. A convolutional neural network(CNN) is a type of neural network which is useful for image recognition and classification. The goal of this thesis will be to generate different styles of L-system based 2D images of trees from scratch using genetic programming. The system will use a convolutional neural network to evaluate the trees and produce a fitness value for genetic programming. Different architectures of CNN are explored. We analyze the performance of the system and show the capabilities of the combination of CNN and GP. We show that a variety of interesting tree images can be automatically evolved. We also found that the success of the system highly depends on CNN training, as well as the form of the GP's L-system language representation

    EIGEN: Ecologically-Inspired GENetic Approach for Neural Network Structure Searching from Scratch

    Full text link
    Designing the structure of neural networks is considered one of the most challenging tasks in deep learning, especially when there is few prior knowledge about the task domain. In this paper, we propose an Ecologically-Inspired GENetic (EIGEN) approach that uses the concept of succession, extinction, mimicry, and gene duplication to search neural network structure from scratch with poorly initialized simple network and few constraints forced during the evolution, as we assume no prior knowledge about the task domain. Specifically, we first use primary succession to rapidly evolve a population of poorly initialized neural network structures into a more diverse population, followed by a secondary succession stage for fine-grained searching based on the networks from the primary succession. Extinction is applied in both stages to reduce computational cost. Mimicry is employed during the entire evolution process to help the inferior networks imitate the behavior of a superior network and gene duplication is utilized to duplicate the learned blocks of novel structures, both of which help to find better network structures. Experimental results show that our proposed approach can achieve similar or better performance compared to the existing genetic approaches with dramatically reduced computation cost. For example, the network discovered by our approach on CIFAR-100 dataset achieves 78.1% test accuracy under 120 GPU hours, compared to 77.0% test accuracy in more than 65, 536 GPU hours in [35].Comment: CVPR 201
    • …
    corecore