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Abstract

A Lindenmayer system is a parallel rewriting system that generates graphic shapes

using several rules. Genetic programming (GP) is an evolutionary algorithm that

evolves expressions. A convolutional neural network(CNN) is a type of neural network

which is useful for image recognition and classification. The goal of this thesis will

be to generate different styles of L-system based 2D images of trees from scratch

using genetic programming. The system will use a convolutional neural network to

evaluate the trees and produce a fitness value for genetic programming. Different

architectures of CNN are explored. We analyze the performance of the system and

show the capabilities of the combination of CNN and GP. We show that a variety

of interesting tree images can be automatically evolved. We also found that the

success of the system highly depends on CNN training, as well as the form of the

GP’s L-system language representation.
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Chapter 1

Introduction

Artificial intelligence (AI) is growing rapidly during the recent decade. People use AI

for risk control, disease analysis, automatic driving, etc. In art, AI has been applied

to various applications. Evolutionary algorithms (EAs), which is a branch of AI, have

proven to be creative for art [17, 48]. Bentley and Corne introduced several EAs for

art, music, architecture and design [17]. Neufeld et al. proposed a multi-objective

optimization method for genetic programming to evolve artistic image filters [48].

Baluja et al. proposed a system that generates images using genetic algorithms based

on the learning of user preferences using an artificial neural network [16]. However,

they also have some limitations. Lopez discussed computational creativity in art and

music, and found computers can be limited by several pre-determined rules [43].

A Lindenmayer system (L-system) is a parallel rewriting system introduced by

Aristid Lindenmayer [51]. L-systems are useful for generating graphical models of

plant images using symbolic expressions. Each L-system expression contains two

major components: the axiom and the production rules. The axiom is the beginning

of the rewriting, and the production rules are the methods that are used to rewrite

the axiom. Number of iterations defines how many times the system will rewrite. It

will rewrite the symbols in the axiom in parallel in each iteration until the number of

iterations has reached. Then the expression will be rendered using turtle graphics [57].

Since the L-system is very sensitive to the change on expression, it is almost impossible

to know what the final rendering will look like just from the L-system expression.

One evolutionary algorithm that has been applied to L-system synthesis is genetic

programming (GP) [35]. GP is a type of evolutionary algorithm that evolves programs

to solve certain problems. Previous researchers have used GP and L-systems for cre-

ative art in several different ways. Congdon and Mazza proposed a system that using

genetic algorithm and 3D L-system that requires human interactions. Bonfim and
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Castro proposed a hybrid evolutionary algorithm with L-system evolving individuals

from several pre-determined expressions [20]. Jacob developed an GP-based 3D L-

system that using interpretation functions for fitness evaluation [32]. Bergen and Ross

proposed a multi-objective GP to create aesthetic 3D models using 3D L-system [18].

A difficulty in using GP in some L-system applications, for example, for evolving

trees and plants models, is finding an appropriate fitness function. One typical way

to do it is to use an interactive GP system. This system will let a human give a score

to each individual. However, humans are slow and inconsistent relative to computers.

We need a more automated and reliable solution than a human to guide the system.

An artificial neural network (ANN) can be used as the fitness evaluator for GP. One

type of ANN is the convolutional neural network (CNN). It adds convolutional layers

to an ANN that can extract high level information from the input images. A CNN

is a type of ANN widely used to recognize and classify images. It is usually trained

by a large number of images to form an abstract model of the images. CNNs have

been used in vision and art applications by several researchers. Gatys et al. proposed

a CNN-based system that can separate the style and content from an image [28].

Simonyan and Zisserman introduced VGGNet that is designed for classifying real-

world photos [54]. Maturana and Scherer proposed VoxNet that is used to classify

voxel-based 3D objects [45]. Qi et al. proposed PointNet, which is similar to VoxNet,

but using a point cloud as the input data, to classify 3D objects [52]. These researchers

achieved impressive results and proved that CNN can be used in image processing

and art.

In this thesis, we use GP as the evolutionary system, L-system as the renderer,

and the CNN as the fitness evaluator. By combining the GP with an L-system, GP

can generate different styles of plants automatically. Thus, a CNN can be used to

evaluate the images generated by the L-system. In this case, the CNN will be acting

as a fitness function in the GP system. We experimented with several CNN strategies

and found that one strategy is better than the others. During the experiments, we

also found different GP languages used will have impact on the results.

In this thesis, we propose a fully automated tree image generating system that

requires no human interaction. We discussed the impact of using different network

architectures and different fitness evaluations for GP. Our research shows the effective

combination of using CNN with GP. We also show that GP can easily mislead the

CNN to make unsatisfactory classifications.

The thesis is organised as follows:

• Chapter 2 is the background knowledge of the thesis.

2



• Chapter 3 discusses literature related to the thesis.

• Chapter 4 discusses our system design.

• Chapter 5 presents the experiment setup and results of our thesis.

• Chapter 6 discusses concluding remarks and future work.

3



Chapter 2

Background

2.1 Genetic Programming

In 1988, Koza proposed and patented a genetic algorithm (GA) for program evolution

named genetic programming (GP) [34, 35]. Similar to a normal GA, a difference is

that GP uses a tree-based structure as a chromosome to represent a program and

uses genetic operations to evolve new programs.

Genetic Programming (GP), introduced by John Koza in 1988 [34], is one of the

evolutionary-based artificial intelligence algorithms that simulate Darwinian evolu-

tion [35]. It uses a basic genetic algorithm (GA) to simulate evolution in order to find

a solution to a particular problem. Computer programs that can potentially solve

the problem are the chromosomes in GP. Each chromosome is also referred to as an

individual. The set of individuals comprises the population. GP evolves new indi-

viduals using two genetic operations, crossover and mutation. Each evolution cycle

is called a generation. At the end of each generation, GP evaluates every individual

in the current generation and gives each a fitness score, using a fitness function. GP

terminates when it meets a termination condition, either solution found or maximum

generation reached. After termination, the best individual selected is the optimal

solution given by GP. More details are discussed in the following sections.

2.1.1 Representation

Different from GA, GP uses a tree structure as a chromosome. There are two types of

nodes used to construct a tree: functions and terminals. The function is a node that

requires at least one node to be its child to operate. A terminal does not require any

children. A simple example of a GP tree would be ADD(DIV(6, 3), X). The ADD
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Figure 2.1: A simple example of GP tree structure.

and DIV in this tree are functions, and the numeric values, 6 and 3, and the variable

X are terminals. Figure 2.1 shows the diagram of this tree. It represents Equation

2.1:

Result = (6÷ 3) +X (2.1)

In GP, the functions and terminals should be pre-defined before execution. The

set of functions and terminals is called the language in GP. The language is defined

according to the problem to be solved. Usually, a size limit is applied to trees to

prevent them from growing too large.

2.1.2 Initialization

Before evolution happens, individuals need to be randomly generated to form the

first generation’s population. The process of generating the first generation is called

initialization. A random tree generator is used to perform this task. There are two

main methods of initializing a tree: the grow method and the full method.

The grow method creates a tree that can be of any depth up to a pre-set maximum

depth. This method randomly picks nodes from functions set and terminals set to

construct the tree. If the pre-set maximum depth is reached, only the terminals will

be used to construct the remaining tree.

The full method generates a tree having a pre-set depth every time. It only picks

functions to construct the tree before reaching the maximum depth, after which the

terminals will be picked to terminate the tree.

Comparing these two methods, the full method will generate trees with similar

bushy shapes but different nodes in a tree. However, the trees generated from the

grow method can have a variety of shapes and depths.

5



2.1.3 Fitness-proportional selection

After initializing a population, GP will select individuals to evolve the next genera-

tion. Individuals are selected via the Darwinian principle that fitter individuals are

more likely to reproduce. There are multiple methods of selection. The tournament

selection is one of the most popular selection methods. It randomly selects a set of a

pre-defined number of individuals. The individual having the highest fitness in this

set will be selected as the “winner” of the tournament. For crossover, two tourna-

ments are done to find two parents. This method ensures the fitter individuals have

a higher chance of being selected, but also gives a chance to individuals that are not

too fit.

2.1.4 Reproduction

In order to simulate Darwinian evolution, there must be a method to generate the

next generation. The GP will pick individuals from the current population using the

selection method and perform reproduction using genetic operations. These genetic

operations will recombine or mutate the selected individuals. The new individuals

will be used to construct the next generation. The sexual recombination operation is

called crossover, and the mutate operation is called mutation.

Crossover

Crossover combines two existing individuals as parents to create offspring. Two indi-

viduals selected using the selection method will be used to perform this operation. A

random node or the entire sub-tree from this random node in each of these two trees

will be swapped to generate the offspring. Figure 2.2 shows an example of crossover.

The selected sub-trees of two parents in the red box are swapped to produce two

offspring. Crossover is the primary genetic operation in GP that allows offspring to

inherit features from their parents.

Mutation

The method of modifying the existing selected individuals is called mutation. Mu-

tation will modify the selected individuals by randomly selecting a node or sub-tree,

and replace it with a randomly generated sub-tree. Figure 2.3 shows an example of

mutation. In nature, mutations can be good, bad or indifferent. Most mutations are

6



Figure 2.2: An example of GP crossover. The sub-trees in the red box are swapped
in the offspring.
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Figure 2.3: An example of GP mutation. The node selected in the red box is replaced
with a newly random generated number 1.

neutral, but they can also be harmful [42]. Similarly, GP’s mutation rate should not

be too high, otherwise it tends to become a random search.

2.1.5 Evaluation

Since GP needs to evolve the population, there must be a way to measure how good

the individuals are. The method of measuring individuals is called fitness evaluation.

The evaluation process will give a fitness score to each individual based on a fitness

function. Fitness function is a pre-defined method that evaluates individuals based

on their performance on the problem at hand. It is problem-related, and each fitness

function is usually only used in its designated problem. The fitness function can be

an algorithm, a score given by a human, or a mathematical measurement. Fitness

evaluation, in most cases, is the most time-consuming process in GP.

2.1.6 Automatic defined function

Automatic defined function(ADF) is introduced by Koza [36]. It is a sub-tree module

that can be evolved separately from the main tree during the evolution. It allows

GP to evolve more than one tree concurrently and permits modular program to be

evolved. The ADF can use either same or different language from the main tree. GP

with ADFs will have one or more dummy arguments to be replaced by the ADF trees

during evaluation.
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2.2 L-system

The Lindenmayer system (L-system) is a parallel rewriting system that was intro-

duced by Lindenmayer [51]. It was designed to generate plants by computers using

symbolic expressions. The famous turtle graphics [7] inspired L-systems. There are

two major components in L-systems: the rewriting system, and the representing sys-

tem. The rewriting system requires one axiom and one or more production rules

as input and expands the input iteratively. The representing system acts like tur-

tle graphics, to draw vector graphics by following the expanded commands from the

rewriting system. The original system works in two-dimensional space. However, Lin-

denmayer expanded the system to three-dimensions to generate more realistic plants.

L-system translates a symbolic grammar to a graphical image. The rewriting

system consists of an initial axiom and production rules. Both the initial axiom

and rules are made of symbols that indicate draw lines, turns and stack operations.

Equation 2.2 defines a general L-system, where V is a set of symbols, ω is a string

containing the symbols from V that indicates the initial state of the system, and P

is a set of production rules that can replace the symbols in the ω.

G = (V, ω, P ) (2.2)

A pre-set value indicates the number of iterations to be performed. In each iter-

ation, the rules will replace the symbols in axiom in parallel. Once the number of

iterations has been met, the rewriting system stops and passes the produced string

to the drawer.

The drawer is similar to turtle graphics that follows the symbols as commands

to draw a graphical image. Before running the L-system, the angle of rotation of

the turtle can be set by the user. Table 2.1 lists several commonly used symbols

of L-system. Once the system has a “F” command, it will move the turtle forward

with certain distance. The “+” and “-” commands are used to turn the turtle left or

right. L-system also allows the stack operations. When the “[” command appears,

the system will push the current location of the turtle into a stack. When the “]”

command appears, the system will pop the most recent location in the stack and

teleport the turtle to this location. The stack operations give the system ability of

drawing branches.

Figure 2.4 shows an example of an L-system expression. This expression starts

with the axiom F+. In each iteration, symbol F will be replaced using rule F = F+,

and symbol + will be replaced using rule + = FF . After reaching the number of
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Table 2.1: Commonly used L-system symbols

Symbol Description
F Move forward
+ Turn left
- Turn right
[ Push commands into stack
] Pop commands out of stack
X Placeholder, can be replaced by rules
Y Placeholder, can be replaced by rules

Figure 2.4: A simple example of L-System expression. Axiom:F+, Rules:F=F+,
+=FF, Iteration=2, Angle=90°. Right image is the output of this example.

iterations, the rewriting process halts. The final produced string is F + FFF + F+.

The purpose of introducing the L-system is to simulate biological growth pat-

terns. It can easily generate self-repeating images. Figure 2.5 shows several examples

generated by L-systems. From these examples, we can find that an L-system is a gen-

eral system that can generate different images. Within the range of all images that

L-system can generate, a small portion of images is of special corner to this thesis:

trees.

Figure 2.6 shows plants generated using L-system. From these examples, it is

hard for a human to predict if results would be trees or not by just looking at the

expressions.

2.3 Deep Learning

Deep learning is currently one of the hottest topics in the area of artificial intelli-

gence. A basic technology of deep learning is the artificial neural network (ANN). It
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n = 4, δ = 60°
F
F → F − f −−f + F ++FF + f−
f → +F − ff −−f − F ++F + f

n = 4, δ = 72°
F − F − F − F − F
F → F − F − F ++F + F − F

n = 7, δ = 77°
F
F → F ++F

n = 10, δ = 90°
FX
X → X + Y F+
Y → −FX − Y

Figure 2.5: Images generated using online L-system generator [5].
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n = 4, δ = 22.5°
F
F → FF − [−F + F + F ] +
[+F − F − F ]

n = 5, δ = 20°
F
F → F [+F ]F [−F ][F ]

n = 5, δ = 22.5°
X
X → F − [[X] + X] +
F [+FX]−X
F → FF

Figure 2.6: Trees generated from L-systems. Images generated using online L-system
generator [5]. The expressions are from Lindenmayer [51]. n is number of iterations.
δ is the angle of rotation.

Figure 2.7: A typical CNN architecture. Image generated using NN SVG [9].

composes multiple processing layers to learn representations of data from the abstract

level [38]. ANN uses the backpropagation algorithm to adjust the internal parameters

automatically. By adding convolutional layers to the front of ANN, we can have a

convolutional neural network (CNN). Figure 2.7 shows the architecture of a typical

CNN model. Many researchers have proved that the CNN is capable of state-of-the-

art results in image processing [37,45,53,54]. The following sections discussed CNNs

in more detail.

2.3.1 Convolutional layers

The main difference between a CNN and an ANN is the use of convolutional layers.

Since images are made of millions of pixels, and each pixel comprises three channels,
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(R,G,B), the amount of input data will be significantly large. In order to decrease the

computational power required to process the images, one or more convolutional layers

are added to the front of the fully connected layers. These convolutional layers can

abstract the spatial and temporal dependencies from an image by using specialized

filters within the layers. After the convolution process, the performance of the entire

model will be better due to the reduced image size. Each convolutional layer has

a filter that extracts the features from the original image. This filter is called the

kernel. The size of the kernel and the weight of each cell on the kernel need to be

pre-defined.

During the convolution process, the kernel shifts the original image to perform

matrix multiplication between a matrix containing the kernel’s weight and the portion

of the image that the kernel is processing. The results will construct a new matrix

containing high-level information from the original image. This new matrix is called

a feature map. One network can have one or more convolutional layers. The more

convolutional layers, the more abstract information is modelled.

2.3.2 Pooling

The primary purpose of pooling layers is to reduce the size of the convolved feature

map. At the same time, it suppresses the image’s noise to extract dominant features

from the feature map. There two different methods of performing pooling: max

pooling and average pooling. Max pooling takes the maximum value from the area

of the image that is covered by the kernel. Average pooling calculates and returns

the average of all the values covered by the kernel. In this case, the max pooling

method has better performance on suppressing noise since it will throw away the

insignificant information. Researchers analyzed the performance difference between

these two methods and found the max pooling is better than the average method in

most cases [22].

2.3.3 Flatten

Images are two-dimensional information, and the real-world objects are three-dimensional.

Since the input layer of a fully connected neural network has only one dimension, a

simple “flatten” strategy is required to perform the transformation. By flattening the

two-dimensional data into one dimension, the flatten layer will perform a row-major

scan through the image and append the row to the tail of its predecessor. The output

of the Flatten layer will be a n × 1 matrix, which n is the number of pixels in the
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Figure 2.8: Activation functions that are commonly used. Graphs generated using
Wolfram Alpha [13].

input image.

2.3.4 Fully connected layers

After convolutional, pooling, and flatten layers, the fully connected neural network

is the next station for the data flow. The fully connected layer is an effective way of

learning non-linear feature maps containing the high-level information generated from

the convolutional layers. It uses the training data to construct a possibly non-linear

function that will fit the data best.

The fully connected layers consist of multiple neurons. Each neuron uses a pre-

defined function to make a decision. The function is called an activation function.

Several weighted paths connect two neurons, and each neuron in the current layer

has a connection to all neurons in the next layer. In some cases, one or more dropout

layers will be added to the network to prevent over-fitting. By using a strategy called

batch normalization in the network, the efficiency of the training might increase in

some cases. The following sections discussed the activation function, dropout, and

the batch normalization in detail.

Activation functions

The fully connected layers are made of neurons. The activation function is a math-

ematical function used in the neurons. Each neuron in the network is acting as a

decision-maker, and cooperates with the others. The decisions made by the neurons

are based on the activation function. There are several different activation functions

possible [14, 41, 47]. Figure 2.8 shows several commonly used activation functions.

14



The ReLU function is widely used in the hidden layers. It formats the negative val-

ues to zero and keeps the positive value unchanged. Usually, a CNN uses more than

one type of activation function, since different neurons have different tasks. The Soft-

max and Sigmoid functions are two common activation functions used in the output

layer. This special type of activation function is also called a classification function.

The sigmoid function is flattened at both sides along the input axis but has a slope in

between. Softmax function extends the sigmoid to more than two categories. Binary

classification problems commonly use Sigmoid as the classification function, and the

multi-category classifications use Softmax.

Dropout

To train a neural network on a relatively small dataset will likely to over-fit. By

adding a filter to ignore some information between two layers can effectively prevent

over-fitting. A percentage of “ignorance” needs to be set when constructing the model.

This percentage is called the dropout rate. It randomly picks neurons and prevents

them from transferring their decisions to the next layer. The dropout rate limits the

proportion of the selected neurons to be ignored.

Batch Normalization

Researchers first discussed batch normalization in deep learning in 2015 [31]. During

the training process, the network parameters are changing to fit the data. Since the

subsequent layer use the previous layer’s output as its input, the parameter adjust-

ment in the previous layer will affect the distribution of input in the current layer.

This shift from the previous layer will be added to the shift made by current layer and

passed to the next layer. This effect is called internal covariate shift [31]. The deeper

the network, the more shift will appear at the output layer. Instead of using very

small learning rate, the batch normalization can be used to solve this problem. It

re-distributes the input data in current batch before each layer to avoid the internal

covariate shift. Batch normalization is not a hard requirement for all neural net-

works. However, it can effectively utilize the sensitive area of the activation function

to accelerate the training process.

Before applying the data to the model, the data need to be normalized or stan-

dardized. By normalizing the data, we will have a reasonable range of data. However,

this regular normalization technique can only be applied to the data before it is fed

into the neural network. When training neural network, gradient exploding and van-
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ishing can lead the model to be unstable or unable to learn. Gradient exploding

happens when the model accumulates large error gradients which causes very large

updates to the weights, and which results in even larger error gradients. Once the

accumulated error gradients become very large, the magnitude of weight updates will

become very large as well. Gradient vanishing is similar but the accumulated error

gradients become very small, and they hardly update the weights. They will cause

the model updating the weight between neurons to be either too slow or too quick.

This can happen in the hidden layer that regular normalization techniques cannot

reach. Batch normalization can normalize the data in the hidden layer to avoid this

from happening.

2.3.5 TensorFlow and Keras

In this section, we talk about several tools that are widely used by researchers and

industries for machine learning nowadays.

TensorFlow

TensorFlow is an end-to-end open-source machine learning platform that is initially in-

troduced by Google in 2015 [11]. It provides a complete set of tools for machine learn-

ing in several popular programming languages like Python, JavaScript, and Swift. It

is capable of constructing various types of neural networks by using several lines of

code to minimize programming effort. Since training neural networks requires a mas-

sive amount of computing power, TensorFlow also provides GPU acceleration as long

as the environment required to execute commands on a GPU is installed on the com-

puter. TensorFlow officially supports most modern NVIDIA graphics cards that use

CUDA. Several open-source libraries add AMD graphics cards support to TensorFlow

as well [4].

Keras

Keras is an open-source deep-learning framework in Python [4]. It provides a high-

level neural network API capable of running on several different machine learning

libraries such as TensorFlow [11], CNTK [8], and Theano [12]. The benefit of using

Keras instead of these barebone libraries is that Keras simplifies the commands of

constructing and running neural network models even further. Keras can automati-

cally detect the GPU model and allow the user to use them by simply turning on a

flag without programming extra configurations. Also, Keras adds support for AMD
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GPUs to perform acceleration. It comes with clear and detailed documentation, works

with TensorFlow perfectly, and allows researchers to focus more on the experiments,

rather than struggling with programming and debugging.

Although Keras supports AMD GPUs, the graphics cards that support NVIDIA

CUDA perform better with TensorFlow and Keras in most cases. For that reason, we

decided to use NVIDIA GPU as part of our system. Because both TensorFlow and

Keras are running on Python, we will use Python as the programming language for

CNN in this thesis.
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Chapter 3

Literature Review

This chapter reviews some previous works that are related to this thesis. The core

components of our system are genetic programming, convolutional neural networks,

and L-systems. We discuss applications of convolutional neural networks that are

studied by researchers today. We also talk about relevant applications of genetic

programming and L-systems. Since we used GPU acceleration in our system, the

graphic card programming framework that we used is also discussed.

3.1 Convolutional Neural Network

McCulloch and Pitts first introduced the concept of the artificial neural network

in 1943 [46]. A neural network is made of neurons that have activation functions.

For any logical expressions, there must be a network containing neurons that will

have the same behaviour. One of the major branches of artificial neural networks is

convolutional neural networks. In 1980, Fukushima introduced two fundamental ideas

for CNNs: convolutional layers and downsampling layers [26]. A pooling layer is a

popular approach used by both academic and industrial areas for the downsampling

layer. It is specifically designed for computer vision. Today, researchers specialize

various CNN models to fit different applications.

Krizhevsky et al. introduced a CNN model called AlexNet in 2012 [37]. There

are about 60 million parameters and 650,000 neurons to construct the network. They

trained the network to classify real-world photos into 1000 different categories. GPUs

are also used as co-processors to accelerate their training process. This model is the

state-of-the-art approach in the ImageNet LSVRC 2010 contest [6].

Another model used for classifying real-world photos is called VGGNet that is

introduced by Simonyan and Zisserman in the ImageNet ILSVRC 2014 contest [54].
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It is two years newer than AlexNet and performs better. They proposed six variations

of the VGGNet, from 11 weight layers to 19 weight layers. Even the smallest version

of the VGGNet contains 133 millions parameters, and the largest version is up to

144 million. The tremendous depth and width of the network requires much more

computing power than AlexNet.

GoogLeNet, introduced by Szegedy et al. in 2014 [56], is a better approach to

reduce computational requirements. The unique design of this model is the inception

module. It gives the capability to the model to decide for itself which filters to

use in the convolutional layers. The model will learn all these parameters when

training. The inception module significantly increases the network’s efficiency and

allows researchers to create deeper and wider networks with similar computational

resource consumption.

CNNs can also be used to classify 3D objects as well as 2D images. Maturana and

Scherer proposed VoxNet to recognize 3D objects [45] and achieve state-of-the-art

accuracy. They used voxels, which are the 3D version of pixels, to represent the 3D

information, and a 3D CNN network structure to process the 3D data.

Qi et al. proposed a PointNet model to classify 3D objects based on point cloud

data [52]. Different from the voxel, the point cloud is another type of data to represent

three-dimensional objects. The point set is represented by a group of coordinates.

They used two networks to achieve the task, the classification network and the seg-

mentation network. The classification network extracts the global feature from the

data and passes it into the segmentation network. The segmentation network is an

extension that makes the decision on both local and global features.

Socher et al. introduced a model that combined the convolutional and recursive

neural networks (CNNs and RNNs) to classify 3D objects [55]. The data they used

is in RGB-D format, which adds a depth extension to the standard two-dimensional

images. They generated the CNN filters using unsupervised training and applied

them to a single convolutional layer. After that, the RNN will take the data flow and

learn hierarchical features from the data.

However, the CNN is not the silver bullet for all kinds of problems. Some other

systems can fool it easily. Nguyen et al. investigated several state-of-the-art neu-

ral networks and fooled them using the image generated by an evolutionary algo-

rithm [49]. They used an evolutionary algorithm generating images to maximize the

classification error of the neural network. They generated a group of images that

are unrecognizable to human but 99.9% correct to the model. The evolutionary al-

gorithm (EA) generated images that achieved high scores in many categories. This
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target triggers the EA system to merge multiple features that are recognizable by the

neural network into one image.

3.2 Genetic Programming and Lindenmayer Sys-

tems

By combining GP and L-systems, we have an evolutionary system that can automat-

ically generate images. The evolved GP expressions will be L-system expressions.

Automatic defined functions (ADFs) in ECJ provides GP a way to denote multiple

evolved trees at the same time. Each individual will have at least two trees, the main

tree and ADF. One of these trees, the main tree, will be used to evolve the axiom

of the L-system. The ADF trees will be used to evolve the production rules. The

number of production rules must be pre-defined so that the number of ADFs can be

set before GP starts running.

Once the GP generates an individual, the system will translate the individual to

an L-system axiom and a set of production rules. The main tree will be expanded

to a string directly. Since every production rules must have a symbol that will be

replaced, the root of ADF will be the replaced symbol of this rule, and the rest of the

tree will be used to construct the replacement string. Then, the L-system will render

the axiom and the set of production rules and produce an image. This image will be

used in fitness evaluation to generate a fitness score for the individual.

Past research has combined the evolutionary algorithm and L-systems in both 2D

and 3D. Congdon and Mazza proposes an interactive GA and 3D L-system [25]. The

chromosome they used in the GA represents several parameters of a tree. It defines

number of branches, length ratio, width ratio, branch taper, branch proximity, tree

depth, branch angle delta, vertical change, parent influence, branch direction noise,

branch number noise, subtree depth noise, and random seed. The renderer will use

these parameters as reference and generate a tree using L-system. The GA parameters

can be determined by the users or evolved by the GA process. The user is the fitness

evaluator in their system. Each individual will be given a score by the user. Since

their system has several restrictions to the trees and requires human to interact, their

results turn to be very good but have similar style.

Bonfim and Castro proposed the FranksTree [20], which investigated the possibil-

ity of combining hybrid evolutionary algorithms and L-systems. Instead of evolving

the L-system grammar, their work evolves the derived L-systems. Their system starts
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at a population that is already known as trees and only cuts the branch in the inter-

connections of the trees during the crossover. The user will interact with the system

by choosing which trees will be the parents and perform a crossover on them. No

mutation is implemented in their system. Since the selection process is done by the

user, there is no need to implement fitness score in their system. The most of their

results can be recognized as trees. However, they have limited population size so

that it can let the user to choose parents. Their results are combinations of several

branches from the first generation.

Jacob proposed the Genetic L-system Programming (GLP) system [32] that evolves

three-dimensional plants using genetic operations. The GP language used in the sys-

tem is as L-system. They introduced a context-dependent L-system data type with

interpretation functions. The fitness values for each individual are given by the inter-

pretation functions. They show that the system has ability to create some complex

structures in a 3D environment.

Bergen and Ross investigated the multi-objective evaluation approach to the GP

and 3D L-system [18]. They used voxels as the basic unit of 3D object, and automated

the process of aesthetic 3D modelling. They experimented with the summed rank and

Pareto strategies of multi-objective fitness evaluation and found that each of them

has its strengths.

3.3 Artificial Intelligence and the Arts

Since aesthetics and arts is highly subjective to individual’s preferences, the fitness

evaluations in past research are mainly interactive or mathematical. Galanter talked

about the history of computational creativity in his book [27]. Most of the previous

research in this area is based on psychological facts, such as the golden ratio, the rule

of thirds, and the fractal dimensions. Lopez talked about computational creativity

in both music and visual arts [43]. In the visual arts section, AARON, a robotic

painting system, is discussed in this book. The purpose of the system is to make

robots become more creative. However, the robot cannot break several rules that

were pre-determined by the researchers, which limited the system’s creativity. This

brings up an issue that the computer system will encounter a hard time without the

help of humans in the field of arts. Cohen-Or and Zhang talked about three types of

computational creativity approaches: creative support tool, generative systems, and

computer colleagues [24]. Computers are supporting humans in the first and third

approaches. Only the second approach will be a fully automated system.
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These days, many researchers are trying to replace the role of humans with trained

AI during the recent boom of machine learning. Baluja et al. developed an artificial

neural network (ANN) to learn user preferences and generate human pleasing images

using GA [16]. They investigate the impact of the results caused by the size of ANN

and different evolutionary algorithms. Their final results are acceptable, but the

performance can be improved.

Blessing and Wen proposed a support vector machine (SVM) approach to predict

the artist’s name for example artworks [19]. They focused on seven artists’ works

and a total of 1400 images for the training dataset. Their results shows that machine

learning is capable of classifying art works.

Cetinic et al. investigated the performance of CNN evaluating fine arts [23]. This

research focused on three aspects of artworks: aesthetics evaluation, sentiment, and

memorability. They used images from multiple sources, from modern photographs to

traditional paintings. They did the experiments on different CNN models and picked

the ones with the best results and compared them with the existing ratings from

humans.

Gatys et al. proposed a CNN approach that separates the image content from style

and applies a different style to the content [28]. Their work is based on the 19-layer

VGG-Network but using only convolutional and pooling layers. They found that using

average pooling improves the quality of the results more than the max pooling. Their

research apply styles of given artworks to real-world photographs. Several companies

and teams are using the methodology they proposed, such as Prisma Lab [10] and

Deep Arts [1], allowing the users to change the styles of their photos.

The innovation engine is introduced by Nguyen et al. in 2015 [50]. They used deep

learning to generate two-dimensional images that are recognizable by both humans

and deep neural networks. Based on their work, Lehman et al. designed a system that

can generate 3D objects without humans interaction [40]. The system demonstrates a

novel method of combining evolutionary algorithms and deep learning. They rendered

the 3D objects to 2D images and recognized the images using a deep neural network.

Bontrager et al. combined generative adversarial networks(GAN) with interactive

evolutionary computation [21]. This is unsupervised learning that cooperated with

the human interactive system. Their system can evolve original images under the

supervision from human to match the target images. They trained the GAN on a

specific target domain, and let the interactive evolutionary algorithm to control the

input of the GAN.
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Chapter 4

System Design

There are three major components in our system: the L-system, the CNN, and the

GP. Figure 4.1 shows the overall design of the system. The details of each module

are discussed in the sections that follow.

4.1 L-system

The L-system is the painter in our system. It takes evolved expressions from GP and

produces the images for the CNN to evaluate and people to look at. The L-system

command set is defined in Table 4.1. Our L-system is working on a two-dimensional

canvas with a white background and a black pen stroke. We set a dynamic canvas

size for the L-system so that the painting turtle stays in the canvas most of the time.

Also, we leave a 20 pixel wide gap from the image borders to the drawing when

adjusting the canvas size. However, the L-system is so general that it can draw a

variety of images that might require a very large canvas. In these cases, this might

cause the system to run out of memory when drawing and evaluating. Thus we set

a maximum value for both the width and height of the canvas to be 4096 × 4096.

Number of iteration will significantly slow down the execution of the L-system. Let

number of symbols in an axiom be a, number of iteration be i, and average number

of symbols in production rules be p. Assuming 25% of the symbols in an expression

will be rewritten on average, the number of symbols in the final expression can be

recursively defined as

f(0) = a

f(i) =
3

4
× f(i− 1) +

1

4
× f(i− 1)× p . (4.1)
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Figure 4.1: The structure of the system.

Let the number of symbols in an axiom be constant and number of iteration be

n. We find the time complexity of a rewriting relative to the number of iteration to

be O(2n).

Table 4.1: The commands of L-system.

Command Usage
F Move forward.
+ Turn left.
- Turn right.
[ Push command into stack.
] Pop out the commands in the stack.
X Placeholder, can be replaced by rules.

To generate different looking trees within same species, we introduced a random

branch cutting strategy. It decides if some branches need to be cut. The probability of

cutting a branch varies from 0% to 50%, and it is defined by each branch individually.

The cutting probability of the main trunk is 0%. A smaller branch has a higher

probability of being cut. Each level of branches’ cutting probability will increase 5%.

Since the randomization is used to generate training data, all of these random features

will be removed from the L-system when integrated with GP in Chapter 5.

There are various of L-system that can be modified before or during the execution.

We tested several combinations and picked one that works best for us. The parameters

are shown in Table 4.2.
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Table 4.2: The parameters used in our L-system.

Parameters Value Usage
Turning angle 20° Control the angle of rotation
Step length 15 pixels Control the length of each step

Iteration depth 4 Control the depth of the iteration
Maximum width 4096 pixels Maximum width allowance of the canvas
Maximum height 4096 pixels Maximum height allowance of the canvas

Figure 4.2: The architecture of our CNN model. Image generated from NN SVG [9].

4.2 Convolutional neural network

CNN is the fitness evaluation engine of the system. It replaces the position of human

evaluation in human-interactive GP to identify the quality of trees produced by GP

and L-systems. It takes the images generated from L-system and gives a fitness score

for each image. The architecture of the CNN we used is shown in Figure 4.2. Our

model is inspired by the VGG Net [54]. The scale of the problem that VGG Net solves

is much larger than ours as it classifies 1000 image categories. Thus we reduced the

size of the network and slightly modified the structure to fit our problem. Although

not necessarily optimal, we picked one which works reasonably well. The detailed

setup of the convolutional layers and the fully connected layers are discussed in the

following sections.

4.2.1 Convolutional layers

Since we might add colours to our L-system in the future, we use all of the three

channels as the input of the neural network. There are two convolutional layers, two

max-pooling layers and a dropout layer in this set.

Since we also borrowed some idea from VGG16, we let the dimension of the input

image is resized to 224 × 224, which is the same as input size of VGG16 [54]. We
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also tried to resize the image to 32 × 32, which is the input size of LeNet-5 [39].

However, the LeNet-5 is used to recognize handwritten, which is much simpler than

L-system trees. Resizing from 4096 × 4096 to 32 × 32 makes the images too blurry,

which are even impossible for human to distinguish if they are trees or not due to the

distortion. Then, we add our first convolutional layers to the system. The kernel size

of this convolutional layer is 3×3. There is a total of 128 convolutional neurons in this

layer using ReLU as the activation function. The next layer is the first max-pooling

layer. It takes the output from the previous convolutional layer and using a pool size

of 2 × 2 to get the output. After that, another convolutional layer takes the output

from the max-pooling layer and uses a 3×3 kernel to convolve the data. In this layer,

there are a total of 32 neurons, and the activation function is ReLU. The second

max-pooling layer is following the second convolution layer. It is identical to the first

max-pooling layer that having a 2× 2 pool size. After the second max-pooling layer,

we added a dropout layer, which has a 25% dropout rate before flattening the data

and sending it to the fully-connected layers.

The initializer we used to randomly initialize the convolution filter is Glorot uni-

form initializer (also called Xavier uniform initializer) [29]. It samples a uniform

distribution from -limit to limit where limit is defined in the Equation 4.2.

limit =

√
6

fan in + fan out
, (4.2)

where fan in is the number of input units and fan out os the number of output

units [4].

4.2.2 Fully connected layers

After the convolutional layers, the system holds a flattened feature map. The fully

connected layers will take this feature map as the input. There are two hidden layers

and one output layer in this set. To prevent over-fitting, we have two dropout layers.

Also, we compiled two batch normalization layers into the model to stabilize and

accelerate the training process.

The first fully connected layer consists of 256 neurons using the activation function

ReLU. Following that, a dropout layer with a 50% dropout rate processes the data.

Then, a batch normalization layer next to it will normalize the data. After that, the

second fully connected layer that has 128 neurons with activation function ReLU is

used. Then, the second dropout layer and batch normalization layer are added to
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the model. These two layers have the same dimension as the first ones. In the end,

another fully connected layer is added as the output layer. The number of neurons

in this layer should be the same as the number of output categories. In our case, we

have three different species and a non-tree category, so this ends up with four neurons

in the output layer of our model.

4.3 Genetic programming system

The GP system is the evolution engine of the entire system. It evolves the L-system

expressions and sends them to the L-system interpreter. The L-system generates

the images using the GP expressions and sends the images to the CNN for fitness

evaluation. We used ECJ 26 [2], a Java-based evolutionary library, to implement our

GP.

The first thing that we need to decide is the language used by the GP. Since ECJ

defines both functions and terminals as functions, where terminals are functions with

no arguments. Since GP must cooperate with the L-system, they must have the same

language so that they communicate flawlessly. The commands in Table 4.1 define the

GP language. However, most of these commands do not have hard requirements for

the number of descendants. We have to carefully re-define these commands in GP to

fit the L-system’s requirements.

Table 4.3: The language set used in the GP.

Function # of arguments Description
Forward (F) 2 Move forward.

Left (+) 2 Turn left.
Right (-) 2 Turn right.

ForwardLeaf (F) 0 Move forward without descendants.
LeftLeaf (+) 0 Turn left without descendants.
RightLeaf (-) 0 Turn right without descendants.
Branch ([ ]) 1 Create a branch using stack.

X 0 Placeholder, can be replaced by rules.

The Table 4.3 shows the GP language. Most of these commands have two versions,

with arguments and without arguments. That means most of these commands can

be either functions or terminals. The GP constructs L-system expressions from the

tree by performing an inorder traversal.
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Figure 4.3: An example of an individual using our GP language. Left-hand side is
the main tree, and right-hand side is the subtree.

Since ECJ can evolve multiple trees simultaneously, our GP has a subtree to

construct the L-system production rules. We implemented the subtree using the

automatically defined functions (ADFs) in ECJ. Usually, GP will replace the ADFs

during execution. We use the ADF as a subtree to construct the production rules. The

replacement procedure will be performed by the L-system instead. The ADF trees

will construct the replacement body of a production rule by performing an inorder

traversal as well. The root of the ADF tree will be the symbol in the production rule

that is to be replaced.

Figure 4.3 shows an example of a GP individual, which consists of two trees. The

tree on the left-hand side is the main tree. It will be used to construct the axiom

of the L-system. After performing an inorder traversal on this tree, the result would

be [+ + F ]FF . The subtree on the right-hand side will execute an inorder traversal

to construct a production rule. The production rule constructed based on the tree is

F = FF+.

Although the L-system can have multiple production rules, we only used one

production rule in our GP system to reduce the complexity of individuals. Using

multiple rules might perform better in some cases, but it requires more computa-

tional resources and time to run the experiments. We did some trial experiments on

multiple-rule expression. However, it frequently falls into an “out of memory excep-

tion” because of the limitations of the hardware we used. Thus, we rolled back to
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the single rule system. Moreover, the single rule system we used provides acceptable

results for our applications.
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Chapter 5

Experiment Setup

In this chapter, we present the experiments for tree generation with 2D L-system.

The environment we used to run these experiments has been discussed in Chapter 4.

5.1 Preparation and first experiment

The goal is to generate 2D trees belonging to one of three styles (or species). We will

use the trained CNN to evaluate trees generated by evolved L-system expressions.

5.1.1 Generating training images

We first have to obtain the training images from our L-system. The two-dimensional

L-system is written in Java. It has two major parts: the iterator and the interpreter.

The iterator is the recursive rewriting system to expand the L-system expression

during iterations, and the interpreter is the renderer of the image. It renders the final

images based on the results from the iterator.

L-system iterator setup

Since the L-system expressions have an axiom and production rules, they need to be

expanded to commands for the interpreter to execute. The purpose of the iterator is

to expand the L-system expressions. The iterator requires a depth of iteration that

indicates how many times the expression will be recursively rewritten. The more

iterations the system runs, the more complex structures it can generate. Since we

want our system to have more variations, we should not use a low number of iterations.

However, if the number of iterations is too high, the expanded expression will be very

long, and the final structure will be enormous. This will easily consume computing
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resources and reach an “out of memory error”. After several tests, we found that

setting the number of iterations to 4 is ideal for obtaining both complex images and

performance stability.

L-system interpreter setup

The interpreter uses the idea of the turtle graphics [57]. A turtle carrying a pen is

on the canvas. The turtle will follow the commands to move on the canvas. Since it

carries a pen, it will draw patterns when moving. Besides vanilla turtle graphics, the

L-system interpreter adds stack operations to the basic command list. It uses a pair

of squared brackets to refer to push and pop the location of the turtle. The stack

operation gives the feature of creating branches. When the open squared bracket

appears, the system will push the current turtle’s location into a stack. When the

squared bracket closed, it will pop out the location from the stack and teleport the

turtle to this location and continue drawing.

To move the turtle using commands efficiently, the step length and the turning

angle of the turtle need to be pre-defined. In our system, we set the step length to

be 15 pixels and the turning angle to be 20°. There are two turning commands: left

(+) and right (-). The left command simply turns the turtle counter-clockwise, and

the right command turns the turtle clockwise. This means that every time a forward

command appears, the turtle will move forward 15 pixels, and every time a turning

command appears, the turtle will turn 20°. The turning direction depends on the

specific turning command.

Random branching sub-system

To generate similar but different trees in our training and test data set, we introduced

a random branching sub-system. This strategy adds a flag in the vanilla L-system

to toggle the random feature. The random branching sub-system has two parts: the

branch cutting module and the random variables module.

As discussed above, the stack operation gives the feature of branching to the

system. The branch cutting module randomly cuts the branches, acting like people

who trim tree branches. This operation changes the appearance of the trees but keeps

them part of the original species. However, we should give less chance to the bigger

branches to be cut. Otherwise, the L-system will likely generate several identical

images with just trunks. The implementation of the strategy is to set a range for

cutting probabilities. The main trunk will have the lowset cutting probability. The
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probability will increase every time the opened squared brackets appear and decrease

when the closed squared brackets appear. The minimum cutting probability is set

to be 0%, which means it will not cut the main trunk. The highest probability of a

branch being cut is 50%. The probability increase or decrease is 5% every step. The

result is that this module will generate similar trees from the same expression, but

missing some branches.

Having the branch cutting module gives the L-system the ability to generate a

variety of trees from the same expression. However, the variation is still not enough

for the training and test data set. Thus we introduced a random variables module to

the sub-system. This module contains several sets of pre-defined random variables. It

can attach to the forward, left and right commands by adding a prefix to it. A prefix

of “(R0)” means the random variables set 0 will override this command’s parameters.

In our system, we have two sets of random variables. “R0” has a minimum value of

15 and a range of 10. “R1” has a minimum value of 2 and a range of 10. For example,

the command “F” will move the turtle forward by 15 pixels. By adding a prefix to

it, it becomes “(R0)F”. This command will first generate a random value from 15 to

25 and use it to override the step length of just this forward command. If the prefix

is added to a turning command, the value will override the turning angle instead.

This module will change the length and direction of several branches. By combining

the branch cutting module with this module, we can use one L-system expression to

generate similar but different trees that will belong to the same species.

All the parameters discussed above are in the Table 5.1. After setting these

parameters, we used three different expressions to generate three species of trees.

The expressions we used are included in Table 5.2. Figure 5.1 shows several examples

of each species. We generated 3000 images for each category. These images will be

split into training and test sets.

5.1.2 First convolutional neural network training

After generating tree images, we split the data into three categories based on species.

Then, we randomly picked 2800 images from each category to form the training set and

200 images to form the test set. For the training set, we flipped the images horizontally

and vertically to avoid the directional effect which might lead CNN cannot recognize

the same image after flipping it. The architecture of the CNN model is similar to the

VGG16 [54]. The only difference is the last layer. Since we only have three categories,

the output layer has only three neurons. The optimizer we used for this model is Adam
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Figure 5.1: The examples of each species one per row. The first, second and third
rows are generated by Expression 1, 2, and 3 in Table 5.2.
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Table 5.1: The L-system parameters used to generate the training and test data set.

Number of iterations 4

Turtle step length 15 pixels

Turtle turning angle 20°

Branch cutting probability
min 0%
max 50%

Random variable set R0
min 15
range 10

Random variable set R1
min 2
range 10

Table 5.2: The L-system expressions used to generate three species of trees.

Axiom Rules

Expression 1 X

X=F(R1)-(R0)[[X]+(R0)X]+(R0)F(R1)[+(R0)

F(R1)X]-(R0)X

F=F(R1)F(R1)

Expression 2 F
F=F(R1)F(R1)+(R0)[+(R0)F(R1)-(R0)F(R1)-(R0)

F(R1)]-(R0)[-(R0)F(R1)+(R0)F(R1)+(R0)F(R1)]

Expression 3 X

F=FX[FX[+(R0)XF]]

X=FF[+(R0)XZ+(R0)+(R0)X-(R0)F[+(R0)ZX]]

[-(R0)X+(R0)+(R0)F-(R0)X]

Z=[+(R0)F-(R0)X-(R0)F][+(R0)+(R0)ZX]
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Figure 5.2: The loss and accuracy during the first training process. Blue lines indicate
training data. Orange lines indicate test data.

optimization [33]. A higher learning rate might skip the best solution, and a lower

learning rate will have a slower update rate. Since our images are not complicated

compared to real-world photos, we set the learning rate to 0.0001 and run for more

epochs. During the training process, these images will be fed to CNN in batches.

Larger batch sizes requires more memory space. Due to hardware restrictions, our

GPU memory can only hold 32 images in one batch to train. We saved the models

after each epoch so that we can easily ignore the ones after overfitting points. We let

our model run for 10 epochs.

Figure 5.2 shows the cross-entropy loss and classification accuracy during this

training. Both loss and accuracy converged instantly after three epochs. The final

test loss is 7.59× 10−5, and the final test accuracy is 99.9286%.

To understand how the CNN model works, we picked six images, one of each

species from the training and test data set and made several modifications. The

original images, shown in Figure 5.3, are black strokes on a white background. The

examples of modified images are shown in Figure 5.4. We modified the colours of the

strokes and background to be white, grey, and black. Then we let the trained model

classify these modified images. Since there is no overfitting point observed from the

Figure 5.2, we picked the last model to do this experiment. The result is shown in
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Image 1 Image 2 Image 3

Image 4 Image 5 Image 6

Figure 5.3: Original images before modification. Images in first row are from training
set. Images in second row are from test set. Image 1, 4 belong to Species 1. Image
2, 5 belong to Species 2. Image 3, 6 belong to Species 3.

Table 5.3. From these results, it seems like the model classifies the images based on

the density of black. Since the second species has the highest density in training,

and the first species has the least density, the model classifies almost all the black

background images to the second species. This model also made mistakes in grey and

white pairs. Since Species 3 has the density between the first and second species, the

model marks all the grey and white pairs to Species 3.

However, we created these “error” images on purpose to verify the behaviours

of our CNN model. The system that integrates the L-system language in GP will

not create images like these images. Even if model is struggling with these modified

images, it might not have significant impact on our final system.
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Table 5.3: The experiment results of modified colour of strokes and background.

Image Original image belong to Stroke Background Actual Predicted
1 train black white 1 2
2 train black white 2 2
3 train black white 3 3
4 test black white 1 2
5 test black white 2 2
6 test black white 3 3
1 train black grey 1 2
2 train black grey 2 2
3 train black grey 3 3
4 test black grey 1 2
5 test black grey 2 2
6 test black grey 3 2
1 train white black 1 2
2 train white black 2 2
3 train white black 3 3
4 test white black 1 2
5 test white black 2 2
6 test white black 3 2
1 train white grey 1 3
2 train white grey 2 3
3 train white grey 3 3
4 test white grey 1 3
5 test white grey 2 3
6 test white grey 3 3
1 train grey black 1 2
2 train grey black 2 2
3 train grey black 3 2
4 test grey black 1 2
5 test grey black 2 2
6 test grey black 3 2
1 train grey white 1 3
2 train grey white 2 3
3 train grey white 3 3
4 test grey white 1 3
5 test grey white 2 3
6 test grey white 3 3
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Original, Black on white Black on grey Grey on black

Grey on white White on black White on grey

Figure 5.4: The examples of modified images using Image 1 from Figure 5.3 as original
image.

38



5.1.3 Experiment: Integrating CNN into GP

Although the experiment above has shown that the first trained model might not be

ideal, we still want to know how it performs with the entire system. Since our CNN

is built on TensorFlow using Python, and the GP system we used is Java-based, we

built a local Python server using Flask framework [3] to host an API receiving images

and returning predicted results. The fitness function of GP will perform a POST

request to the Python server by sending the image rendered from the L-system and

receive the predicted result. However, the ECJ requires standardized fitness such that

0 is the best individual, whereas the CNN returns a value from 0 to 1 where 1 is the

best. Equation 5.1 shows the formula we used. This equation will convert the value

to the range of 0 to 100, where 0 is the best.

Standardized fitness = (1.0− Prediction from CNN) ∗ 100 (5.1)

In GP, various parameters can be adjusted. We inherited the parameters file from

the ECJ’s embedded Koza-style generational GP system [44]. We adjusted these

parameters to fit our application. The GP parameters are in Table 5.4. Undoubtedly,

although there might be a better settings than ours, these work well and can produce

acceptable results. We have discussed the GP language in Chapter 4. Table 4.3

shows the language we used for this experiment. The setup for the L-system remains

unchanged from Section 5.1.1 except toggling off the random branching. To generate

different categories, we simply use different neurons’ values from the output layer of

CNN model. For each category, we let the system generate 100 images. Figure 5.8

shows several examples of the output using this setup. All the images are generated

within the first generation. This means our GP is just acting as a random expression

generator in this experiment.

After obtaining the results, we can see there are some tree-like patterns, but they

are a small portion of the results. From our observations, the percentage of tree-like

patterns in Species 1 is 0%, in Species 2 is 1%, in Species 3 is 5%. The total trees

generated from the system using this setup is 2%. The rest of the images in the

Species 1 are mostly blank or extremely simple, like the last images in the first row

shown in Figure 5.8. For the images in Species 2, some of them are extremely simple

similar to Species 1, but most of the images are very complex. The images in Species

3 have more variations than the previous two. They tend to form several tree-like

patterns. Since the L-system is a very comprehensive, general system, it is capable of

generating many different patterns, and a small portion of these patterns are visually
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Image generated for Species 1.

Image generated for Species 2.

Image generated for Species 3.

Figure 5.8: Images generated from the system using first trained CNN model based
on VGG16.
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Table 5.4: The parameters used in the GP.

Parameter Value
Population size 1024
Maximum generation 50
Maximum tree size 17
Crossover rate 90%
Mutation rate 10%
Tournament size 3
Elitism size 5
Tree initialization method half & half
Initialization grow probability 0.5
Initial tree depth 2 - 5

interpretable as trees. Besides that, the GP explores a huge search space. Thus it

might find many images that easily fool the CNN. We also tried adding more data

to the training set. Although we increased the training set to 3000 images for each

category, there was no significant improvement on the results. We also found that

there is no direct relationship between the test accuracy of the CNN model when

training and the acceptance rate when generating trees.

After having some ideas of how the VGG16 network works, we decided to modify

the network to fit our application.

5.2 Experiment 1: Modified CNN model

We used our own CNN architecture to build the system in the second experiment.

Figure 4.2 shows the architecture of the network. We compiled the architecture

described in Table 5.5. Since the appearance of our tree images are very similar to

the images used in handwritten recognition, we use ideas from LeNet-5 [39] which is

a CNN application to recognize documents.

In Table 5.5, Layer 1 and 3 are used to extract the features from the input images.

Layer 2 and 4 are used to subsample the data from the convolution to reduce the size

of feature maps. Layer 5 is the first dropout to prevent the overfitting after the con-

volutional layers. Layer 6 simply flatten the output from the convolutional layers into

sequential, so that it can be processed by the following fully connected layers. Layer

7, 10, 13 are the fully connected layers. We added dropout and batch normalization

layers between every two fully connected layers to prevent the overfitting and stabilize
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Table 5.5: Our re-designed CNN architecture.

Layer
Output
Shape

# of
neurons

Activation
function

Note

1 Conv2D (222, 222) 128 ReLU kernel size: (3, 3)
2 MaxPooling2D (111, 111) 128 pool size: (2, 2)
3 Conv2D (109, 109) 32 ReLU kernel size: (3, 3)
4 MaxPooling2D (54, 54) 32 pool size: (2, 2)
5 Dropout (54, 54) 32 dropout rate: 0.25
6 Flatten (93312)
7 Dense (256) 256 ReLU
8 Dropout (256) 256 dropout rate: 0.5
9 BatchNorm (256) 256
10 Dense (128) 128 ReLU
11 Dropout (128) 128 dropout rate: 0.5
12 BatchNorm (128) 128

13 Dense (3) 3 Softmax
loss: categorical
cross entropy

the gradient.

The rest of the system remains the same as the first experiment we did in Sec-

tion 5.1. Figure 5.12 shows some results from this setup. This model has similar

performance to the previous experiment. After visual inspection, 1% of the results in

Species 1, 3% of the results in Species 2, and 2% of the results in Species 3 can be

considered to look like trees. This ends up with the total acceptance rate to be 2%.

In this experiment, the GP always find the optimal individuals in the Generation

0 since the CNN gives high scores to the these images. The GP does not evolve the

individuals and works like a random search.

Since there are several spiral-like images, for example, the second image of the

Species 1 in Figure 5.12, the non-tree images have some similarities as well. We

decided to take a step back to teach the CNN to distinguish if a pattern is a tree or

not.
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Image generated for Species 1.

Image generated for Species 2.

Image generated for Species 3.

Figure 5.12: Images generated from the system in the second experiment.
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Table 5.6: Tree vs. non-tree CNN architecture. Red text is the difference from
Table 5.5.

Layer
Output
Shape

# of
neurons

Activation
function

Note

1 Conv2D (222, 222) 128 ReLU kernel size: (3, 3)
2 MaxPooling2D (111, 111) 128 pool size: (2, 2)
3 Conv2D (109, 109) 32 ReLU kernel size: (3, 3)
4 MaxPooling2D (54, 54) 32 pool size: (2, 2)
5 Dropout (54, 54) 32 dropout rate: 0.25
6 Flatten (93312)
7 Dense (256) 256 ReLU
8 Dropout (256) 256 dropout rate: 0.5
9 BatchNorm (256) 256
10 Dense (128) 128 ReLU
11 Dropout (128) 128 dropout rate: 0.5
12 BatchNorm (128) 128

13 Dense (2) 2 Sigmoid
loss: binary
cross entropy

5.3 Experiment 2: Tree vs non-tree model

5.3.1 CNN structure and data pre-processing

Since there are still too many non-trees, so we want to differentiate trees vs. non-tree.

Thus we modified the network to fit the binary classification. Basically, we changed

the number of neurons in the output layer to 2, the activation function of the output

layer to sigmoid, and the loss function to binary cross entropy. Table 5.6 shows the

architecture of the tree vs. non-tree model. The only modification we made is Layer

13.

For the data set, we chose 1000 tree images which are randomly picked from

Species 1, 2, and 3. For the non-tree images, we first filtered out the tree-like patterns

from the output of the previous images. Then we randomly picked 1000 non-tree

images from the remaining.

We let the training versus test ratio to be 9:1. We randomly picked 900 images

from both tree and non-tree categories to form the training set, and 100 images from

these two categories to form the test set.
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Figure 5.13: The loss and accuracy during the tree vs. non-tree model training
process. Blue lines indicate training data. Orange lines indicate test data.

5.3.2 Train and test standalone tree vs non-tree model

We set the number of epoch to be 10. We got the loss and accuracy plot in Figure 5.13.

From the plot, we found that it converged at Epoch 3. To prevent overfitting, we

used the model after the Epoch 3 to perform testing.

The single tree vs. non-tree is not intended to be a fitness evaluator. But we were

curious to use it as such. We replaced our Species CNN evaluator with the standalone

tree vs.non-tree evaluator and let the GP generate just trees. After 100 runs, some

of the results are shown in Figure 5.14. We can see that the single tree vs. non-

tree model is inadequate as a fitness evaluator for evolving tree-like images, although

we still can find some tree-like structures in these results. Instead, we decided to

use the standalone tree vs. non-tree model to support our Species model during the

evaluation.

5.3.3 Experiment 3: Dual CNN model

Now we have two models that are running simultaneously, we must modify the fitness

function of the GP to fit this setup. Now GP will receive 2 values from 2 CNN models

for each individual. Since the tree vs. non-tree model will send a probability to GP,
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Figure 5.14: Images generated from the system using standalone tree vs. non-tree
model.

and higher values means this image has a higher possibility to be a tree, we simply

multiply this probability to the probability from the model we used in Section 5.2.

Equation 5.2 shows how the new fitness is calculated.

Raw fitness = Probability to be certain species× Probability to be tree (5.2)

From this equation, in order to get a higher fitness, both of these two probabilities

must be high. Similar to Equation 5.1, we have to adjust the raw fitness to standard-

ized fitness so that the ECJ can accept it:

Standardized fitness = (1.0− Raw fitness) ∗ 100 (5.3)

Due to running two CNN models and GP at the same time, the first change of the

system we found is the execution time to generate one image takes longer. It took

around 4 to 5 minutes to generate one image on average. Because of that, we ran

the system 20 times for each species to reduce the execution time and still keep the

results statistically valid. Figure 5.18 shows the part of the results of this setup.

From these output images, we found that this setup works well when generating

trees for Species 3. 34% of the output images for Species 3 can be considered as trees.

However, this model did not perform very good for Species 1 and 2. The tree-like

pattern we got for Species 1 is 2%, and Species 2 is 4%. The total acceptance rate

for this setup is 13%. But again, these images are all generated from Generation 0.

To verify that we made the decision to choose the model after Epoch 3 is rea-

sonable, we picked the model after Epoch 9 and did the same test again. The total

acceptance rate dramatically drops to 4%. This result proves that the model is over
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Image generated for Species 1.

Image generated for Species 2.

Image generated for Species 3.

Figure 5.18: Images generated from the system using both tree vs. non-tree model
and Species model.
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Table 5.7: Combined tree vs. non-tree model with species model. Red text is the
difference from Table 5.5.

Layer
Output
Shape

# of
neurons

Activation
function

Note

1 Conv2D (222, 222) 128 ReLU kernel size: (3, 3)
2 MaxPooling2D (111, 111) 128 pool size: (2, 2)
3 Conv2D (109, 109) 32 ReLU kernel size: (3, 3)
4 MaxPooling2D (54, 54) 32 pool size: (2, 2)
5 Dropout (54, 54) 32 dropout rate: 0.25
6 Flatten (93312)
7 Dense (256) 256 ReLU
8 Dropout (256) 256 dropout rate: 0.5
9 BatchNorm (256) 256
10 Dense (128) 128 ReLU
11 Dropout (128) 128 dropout rate: 0.5
12 BatchNorm (128) 128

13 Dense (4) 4 Softmax
loss: categorical
cross entropy

trained at Epoch 9, and the use of model after Epoch 3 is reasonable.

5.4 Experiment 4: Combined tree/non-tree model

and species model

The system setup we used in Section 5.3.2 shows some improvement on one species,

but the rest are still not good. Since we trained these two models separately, they

evaluate individuals alone and cannot share information. This might cause the in-

efficiencies during both evaluating and training. So we decided to merge two CNN

models into one. Due to the architecture we used for standalone tree vs. non-tree

model is highly similar to the architecture we used in Section 5.2, they can be easily

merged together by just changing the output layer. Table 5.7 shows the new archi-

tecture of our CNN. The difference from Table 5.5 is marked as red. There are total

of 4 categories in this model: 3 species and non-tree.

There are 3000 tree images for each species but only 2441 non-tree images avail-

able. To prevent training bias, the amount of the data in each category must be the

same. The strategy we used to balance the data is called over sampling. It randomly
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Figure 5.19: The loss and accuracy during the combined model training process. Blue
lines indicate training data. Orange lines indicate test data.

picks several existing data and makes copies until the total amount of the data reach

the target. At the end, we have 3000 images for each category. The training and test

ratio is kept to 9:1, so there are 2700 images in training set and 300 images in test

set for each category.

After training the CNN model, we plot out the loss and accuracy graph in Fig-

ure 5.19. The final test accuracy is 99.9167%, and the test loss is 3.789 × 10−4. For

GP fitness evaluation, we combined two CNN models to one, thus we changed the

fitness function back to the one we used in Section 5.1.

Figure 5.23 shows part of the results from this setup. According to the results,

this model performs well for all 3 species. 60% of the output for Species 1, 40% of the

output for Species 2, and 50% of the output for Species 3 can be considered as trees.

This comes up with the total acceptance rate of 50%. This is currently the best setup

among all the experiments we did. Table 5.8 shows some L-system expressions that

can be rendered to some images shown in Figure 5.23.
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Image generated for Species 1.

Image generated for Species 2.

Image generated for Species 3.

Figure 5.23: Images generated from the system using combined tree vs. non-tree and
species model.
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Table 5.8: The L-system expressions generated from experiment 4. These expressions
are related to the first row of each species in Figure 5.23.

Tree Species Expression

1 1
FXXF++-FX-+FXF+F+FF+--F+--++-F+XX+[-]F[-]F[+]-F--

X=[-F--[+]++XXXX+F]

2 1
++XFXX+X--+--FFFXXF+-F+F[-]-+++

-=+FF-F++-F+X-FXF

3 1
XX-X+-++[XX-]++F+XX

X=FX[XF-]

4 1
+XFFF+-+X-XX+X-FX--+XX-+F-FF-+-F[-F+++X+]+[F]++-+

-F-FFF--F-FX+XX+-XF-X-+XX++-

F=[[[F]F--X]]F[FXXFFX+]-[-]X[+]+[X+-]

5 1
X-F

X=[+FX]X-XF+[+]

6 2
[F]X++[FFF]FXF-

+=X+[X-FX+X-F-++XXF-+F-[+]+F]

7 2
---FX-XX+X+-+X-XF

F=XF[[X]FXF+FF]

8 2
[X]FXXFX-FXFF+++[-]+XX+FXXFFX-X

X=[X]+X+---+X+-+FX[F]+XX+X[X++]

9 2
-+F

+=F+-+FF+

10 2
-X+-X+[-]++

+=X+[[FXX]X[XF-X++XX-]-F-[F]+-XF]

11 3
FX[-]FF+-

F=XF-XFF++-X-X+X+X+--+[-XFF---F+]

12 3
+-X+X--FFF+

X=[FFX]X+X++X

13 3
-+---X+-F-+F[X]X[[[X]]]

X=[XXFF[F]XXFF-++FX[-XFF+X+]]

14 3
+XF-X

-=[XF+XXFX+[F]-+-+]-[XFF+FF-]X[+]F[+]+F

15 3
X--

X=[[F]FF+X--+F+-FFFXF+XFFFX--FFXX[+XX]+[-]]
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5.5 Experiment 5: Extended model

Once we have the combined model, the non-tree data set has a lot of variations.

Some of the non-tree patterns are very simple, some are very complex, and some are

in between. We decided to explore further of the CNN model to see if we can improve

the results. We split the non-tree category into two categories: simple non-tree and

complex non-tree. This turns the total number of categories to 5: 2 non-tree and 3

species. Thus, we have to modify the output layer of CNN to contain 5 neurons.

Since the data “in-between” are very few, we simply ignore this small portion of

the data. We manually split the remaining non-tree patterns into simple non-tree

and complex non-tree. After that, there are a total 1623 images in simple non-tree

category and 755 images in complex non-tree category. However, there are 3000

images for each species, and so we have to use the same strategy used in Section 5.4

to balance the data. However, over sampling does not work well when the major part

of the data needs to be filled. So we decided to set the target to 1200 images for each

category. If there are more than 1200 images in the category, these images will be

randomly picked from the data set. If there are less than 1200 images in the category,

over sampling will be used to fill images to the target amount.

The training and test ratio is kept to 9:1, and so there are 1080 images in the

training set and 120 images in the test set for each category. After training the

model, we plot out the loss and accuracy graph in Figure 5.24. According to the plot,

the cross entropy loss on test set is fluctuating during training.

We kept the rest of the system the same as in Section 5.4. After executing 20

times for each species, part of the results are shown in Figure 5.28. The acceptance

rate for Species 1 is 0%, Species 2 is 15%, and Species 3 is 5%. Total acceptance rate

is 7%.

To prove that this result is not caused by the limited amount of training data, we

set the target to 1500 images for each category and re-train the CNN model. After

running the entire system again, the result remains similar. From these results, we

can conclude that this strategy was not beneficial.

5.6 Discussion

After performing several experiments, we composed the results into Table 5.9. Ex-

periment 6, which is the very first experiment, is discussed in Section 5.1.3. We also

include the average generation producing the final results for each experiment. For
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Figure 5.24: The loss and accuracy during the extended combined model training
process. Blue lines indicate training data. Orange lines indicate test data.

experiment 1, 2, 3 and 6, we did 100 runs for each species. For experiment 4 and 5,

we performed 20 runs for each species due to the slower execution speed.

According to the results, experiment 4 obtains the best acceptance rate in all

Species. From our evaluation of image quality, the 4-output CNN performs best

among all strategies. Although the standalone tree/non-tree model does not work

well in experiment 2, experiment 3 shows the tree/non-tree model is useful when

working with the species model. However, comparing experiment 4 with experiment

3, we found that the independent Species model and tree/non-tree model are mutually

exclusive. By giving the tree/non-tree portion ability to share information with the

species portion, the combination of both becomes more accurate.

The last 2 experiments in Table 5.9 did not perform well. As explained earlier, our

initial idea to do the experiment 5 is due to the pattern of the false-positive images

generated from experiment 4. These images can generally falls into 2 categories:

simple non-tree and complex non-tree. We thought it might help the CNN if we split

the non-tree category into these 2 new categories. However, this strategy is worse

than the 4-output one.

Since the experiment 4 achieves the best results, we calculated the average best

fitness of these 20 runs and plotted its average fitness for each species in Figure 5.29.
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Image generated for Species 1.

Image generated for Species 2.

Image generated for Species 3.

Figure 5.28: Images generated from the system using extended combined tree vs.
non-tree and species model.
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Table 5.9: Summary of the results from all the experiments.

CNN strategy
Test
loss

Test
accuracy

Acceptance rate(%) Avg.
generation
solutions

Species
Avg.

1 2 3
1 Species 0.0001 0.9929 1 3 2 2 0.0
2 Tree/non-tree 0.0139 0.9811 - - - 2 0.0
3 Dual CNN - - 2 4 34 13 0.0
4 4-output 0.0020 0.9983 60 40 50 50 24.47

5 5-output 0.2402 0.9733 0 15 5 7 8.88
6 VGG16 0.0002 0.9979 0 1 5 2 0.0

Figure 5.29: Average best fitness plot for 20 runs of each species in experiment 4.
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Image generated for Species 1.

Image generated for Species 2.

Image generated for Species 3.

Figure 5.33: Some of successful results chosen from the experiment 4 in Table 5.9
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Comparing this graph with the data in Table 5.9, we found the species that have a

higher acceptance rate tends to have higher fitness score. Figure 5.33 shows some of

our successful results generated by experiment 4 in Table 5.9. Most of the results

can be categorized into their own Species. In Table 5.8, we listed the expressions

corresponding to the first row of each species in Figure 5.23. Due to the sensitivity

of L-system expressions, there is no obvious similarity among these expressions or

the expressions we used to generate the target images, even they belongs to the same

species. With a given expression, it is impossible that human can distinguish whether

it is tree or not without rendering it.

We extended the size of the data set and retrained the networks for each setup as

well, but the results become even worse than the networks trained with small data

set. From our understanding, this effect might be caused by the variations of our

data. Adding more data will increase the variation within each categories. Due to

the scale of our network, the high variation among images in the same category can

cause the model to be unstable and make poor predictions.

In summary, our system can be considered as capable of generating trees from

scratch by the guide of CNN. As the statistics shows in Table 5.9, experiment 4

achieves 50% acceptance rate, and still has divergent creativity.

5.6.1 Comparison between species

As discussed earlier, some of our training images are shown in Figure 5.1. The

branches of species 1 trees are very sparse and well-separated, while the branches

of species 2 are more thick and dense. And the species 3 are in between, which will

have more overlapping branches than species 1 but less than species 2. Comparing the

results we obtained from experiment 4 with these training images, these characteristics

of each species still exist.

5.6.2 Other observations during the experiments

When testing our system, we encountered a bug (X-bug) that encouraged the system

to generate more promising results in some experiments. That bug did not allow

the placeholder X to be rewritten properly, and it had no effect in expressions. In

other words, the buggy L-system language was less expressive than it should have

been. Figure 5.37 shows the results when experimenting the 4-output model with the

X-bug.

From the results, we found that this bug pushed the total acceptance rate to

57



Image generated for Species 1.

Image generated for Species 2.

Image generated for Species 3.

Figure 5.37: Images generated from the system with the X-bug using 4-output CNN
model.
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58.33%. This is even better than the results we got from the system with the bug fixed.

We do not have a solid reason about what caused this phenomenon, but we thought

the X-bug gives the system chance to create bloat. In the DNA of living creatures,

there are also a lot of genes that are not translated into protein sequence [15]. The

bloat created by the X-bug is like these unexpressed genes in the creatures’ DNA.

Since there is no other way that our system can create bloat, it might help the

evolutionary system in some ways. However, this requires more investigation to figure

out.
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Chapter 6

Conclusion

This research explores the possibility of using a CNN as a guide for GP when evolving

L-system rendered images. The wide potential of L-systems gives GP enough space for

creating different variety of images. Our approach automates the process of generating

desired trees images. There are several research that inspired us. There is also a lot

of improvements possible for future work.

As we discussed in Section 3.2, there are several researchers combined evolutionary

algorithms and L-system. Congdon et al. introduced the GenTree which is using

interactive genetic algorithm. Since the system requires human to be part of it, they

obtained good results. However, they focus on making 3D polygonal trees, and their

system is specifically designed to build trees. Since our use of a general L-system

creates a larger search space for GP, it can cause more challenges, but the trees

generated from our system are more diverse.

FranksTree [20] used an L-system like ours. Instead of generating trees from

scratch, their system requires humans to pick several trees to be the initial generation

and then applies the genetic operations to these known trees. Thus, their results

combine the features from the original generation and highly related to these original

trees picked by the users. This lets the system evolve tree images right away, thanks

to human interaction. Our system must use CNNs to find tree images. However,

some of their results are not convincing biological trees. For example, one result from

their system connect three trees in series, which makes it looks like there is a tree

growing from a leaf of another tree.

Genetic L-system Programming [32] uses a pattern matching function for the

evaluation process. Since this is a very early research, the complexity of results from

the system is minimal.

Bergen and Ross [18] built a L-system that use GP to evolve 3D models. Since
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their system is not designed for generating trees, but rather aesthetic 3D models,

their results are not trees. They did use a general purpose 3D L-system, however,

and tree might be evolved on occasion.

We achieves a tree acceptance rate of 50% shown in Table 5.9, but keep the ability

of the system to generating diverse plants automatically. Considering the generality

of the L-system, trees are a very small portion of the entire search space. Comparing

with the previous researches, our system can be considered as a success based on the

acceptance rate and the diversity of the results.

6.1 Future work

Since most of our work focuses on the CNN training, we did not explore on GP

design as extensively. Future improvements can be to design a more appropriate

GP language, using some heuristic randomization to generate the first generation, or

simply adjusting the parameters of GP to find a better setup. Our “buggy” L-system

was beneficial for species generator, and so evolution is very sensitive to the nature

of the L-system language used.

Besides that, our CNN has a lot of room to improve as well. Different architecture

will have different benefit to the system. Changing the number of convolutional layers

or the number of neurons in each layer will change the behaviour of the network.

Besides that, using different optimizer or different activation functions will also affect

the output of the network. Future researchers can design a better structure of CNN

that can fit this application better.

For the L-system, it can be extended to 3D by introducing pitch operations.

However, it requires to modify the GP language and CNN structures as well. We

tried to use only 3D tree/non-tree model in the new system, but the results are not

promising. We thought it might require the Species model as well to perform better.

This needs more study.

Since CNN is known as translation-invariant, it can only capture local features.

Future studies can focus on adding components to capture global features. Having

this extra information might help the system to evaluate individuals better.

Another possible improvement can be considering unsupervised learning or re-

inforcement learning. Since CNN is known as a supervised learning algorithm, the

training of CNN usually requires a considerable amount of labeled data. Labeling

data can easily consume a huge amount of time. Unsupervised learning does not re-

quire labeling data. And reinforcement learning will use reward system and follow the
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trial-and-error basis to learn making decision. An example of reinforcement learning

is generative adversarial network (GAN) [30]. Future researchers can design a GAN

to replace the CNN in our system.
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