33 research outputs found

    Convexity-Increasing Morphs of Planar Graphs

    Full text link
    We study the problem of convexifying drawings of planar graphs. Given any planar straight-line drawing of an internally 3-connected graph, we show how to morph the drawing to one with strictly convex faces while maintaining planarity at all times. Our morph is convexity-increasing, meaning that once an angle is convex, it remains convex. We give an efficient algorithm that constructs such a morph as a composition of a linear number of steps where each step either moves vertices along horizontal lines or moves vertices along vertical lines. Moreover, we show that a linear number of steps is worst-case optimal. To obtain our result, we use a well-known technique by Hong and Nagamochi for finding redrawings with convex faces while preserving y-coordinates. Using a variant of Tutte's graph drawing algorithm, we obtain a new proof of Hong and Nagamochi's result which comes with a better running time. This is of independent interest, as Hong and Nagamochi's technique serves as a building block in existing morphing algorithms.Comment: Preliminary version in Proc. WG 201

    On Reconfiguring Tree Linkages: Trees can Lock

    Get PDF
    It has recently been shown that any simple (i.e. nonintersecting) polygonal chain in the plane can be reconfigured to lie on a straight line, and any simple polygon can be reconfigured to be convex. This result cannot be extended to tree linkages: we show that there are trees with two simple configurations that are not connected by a motion that preserves simplicity throughout the motion. Indeed, we prove that an NN-link tree can have 2Ω(N)2^{\Omega(N)} equivalence classes of configurations.Comment: 16 pages, 6 figures Introduction reworked and references added, as the main open problem was recently close

    Locked and Unlocked Polygonal Chains in Three Dimensions

    Get PDF
    This paper studies movements of polygonal chains in three dimensions whose links are not allowed to cross or change length. Our main result is an algorithmic proof that any simple closed chain that initially takes the form of a planar polygon can be made convex in three dimensions. Other results include an algorithm for straightening open chains having a simple orthogonal projection onto some plane, and an algorithm for making convex any open chain initially configured on the surface of a polytope. All our algorithms require only O (n) basic moves.

    Deformations of associahedra and visibility graphs

    Get PDF
    Given an arbitrary simple polygon, we construct a polytopal complex analogous to the associahedron based on its convex diagonalizations. This polytopal complex is shown to be contractible, and a geometric realization is provided based on the theory of secondary polytopes. We then reformulate a combinatorial deformation theory in terms of visibility and presents some open problems

    Locked and Unlocked Chains of Planar Shapes

    Full text link
    We extend linkage unfolding results from the well-studied case of polygonal linkages to the more general case of linkages of polygons. More precisely, we consider chains of nonoverlapping rigid planar shapes (Jordan regions) that are hinged together sequentially at rotatable joints. Our goal is to characterize the families of planar shapes that admit locked chains, where some configurations cannot be reached by continuous reconfiguration without self-intersection, and which families of planar shapes guarantee universal foldability, where every chain is guaranteed to have a connected configuration space. Previously, only obtuse triangles were known to admit locked shapes, and only line segments were known to guarantee universal foldability. We show that a surprisingly general family of planar shapes, called slender adornments, guarantees universal foldability: roughly, the distance from each edge along the path along the boundary of the slender adornment to each hinge should be monotone. In contrast, we show that isosceles triangles with any desired apex angle less than 90 degrees admit locked chains, which is precisely the threshold beyond which the inward-normal property no longer holds.Comment: 23 pages, 25 figures, Latex; full journal version with all proof details. (Fixed crash-induced bugs in the abstract.

    Pseudo-Triangulations, Rigidity and Motion Planning

    Get PDF
    This paper proposes a combinatorial approach to planning non-colliding trajectories for a polygonal bar-and-joint framework with n vertices. It is based on a new class of simple motions induced by expansive one-degree-of-freedom mechanisms, which guarantee noncollisions by moving all points away from each other. Their combinatorial structure is captured by pointed pseudo-triangulations, a class of embedded planar graphs for which we give several equivalent characterizations and exhibit rich rigidity theoretic properties. The main application is an efficient algorithm for the Carpenter\u27s Rule Problem: convexify a simple bar-and-joint planar polygonal linkage using only non-self-intersecting planar motions. A step of the algorithm consists in moving a pseudo-triangulation-based mechanism along its unique trajectory in configuration space until two adjacent edges align. At the alignment event, a local alteration restores the pseudo-triangulation. The motion continues for O(n3) steps until all the points are in convex position. © 2005 Springer Science+Business Media, Inc

    Flipturning polygons

    Full text link
    A flipturn is an operation that transforms a nonconvex simple polygon into another simple polygon, by rotating a concavity 180 degrees around the midpoint of its bounding convex hull edge. Joss and Shannon proved in 1973 that a sequence of flipturns eventually transforms any simple polygon into a convex polygon. This paper describes several new results about such flipturn sequences. We show that any orthogonal polygon is convexified after at most n-5 arbitrary flipturns, or at most 5(n-4)/6 well-chosen flipturns, improving the previously best upper bound of (n-1)!/2. We also show that any simple polygon can be convexified by at most n^2-4n+1 flipturns, generalizing earlier results of Ahn et al. These bounds depend critically on how degenerate cases are handled; we carefully explore several possibilities. We describe how to maintain both a simple polygon and its convex hull in O(log^4 n) time per flipturn, using a data structure of size O(n). We show that although flipturn sequences for the same polygon can have very different lengths, the shape and position of the final convex polygon is the same for all sequences and can be computed in O(n log n) time. Finally, we demonstrate that finding the longest convexifying flipturn sequence of a simple polygon is NP-hard.Comment: 26 pages, 32 figures, see also http://www.uiuc.edu/~jeffe/pubs/flipturn.htm
    corecore