167 research outputs found

    Global exponential stabilization of language constrained switched linear discrete-time system based on the s-procedure approach

    Get PDF
    This paper considers global exponential stabilization (GES) of switched linear discrete-time system under language constraint which is generated by non-deterministic finite state automata. A technique in linear matrix inequalities called S-procedure is employed to provide sufficient conditions of GES which are less conservative than the existing Lyapunov-Metzler condition. Moreover, by revising the construction of Lyapunov matrices and the corresponding switching control policy, a more flexible result is obtained such that stabilization path at each moment might be multiple. Finally, a numerical example is given to illustrate the effectiveness of the proposed results

    Actuator fault estimation based on a switched LPV extended state observer

    No full text
    article en cours de soumission à une revueActuator fault estimation problem is tackled in this paper. The actuator faults are modeled in the form of multiplicative faults by using effectiveness factors representing the loss of efficiency of the actuators. The main contribution of this paper lies in the capability of dealing with the presented problem by using a switched LPV observer approach. The LTI system in the presence of faulty actuators is rewritten as a switched LPV system by considering the control inputs as scheduling parameters. Then, the actuator faults and the system states are estimated using a switched LPV extended observer. The observer gain is derived, based on the LMIs solution for the switched LPV systems. The presented actuator fault estimation approach is validated by two illustrative examples, the first one about a damper fault estimation of a semi-active suspension system, and the second one concerned to fault estimations on a multiple actuators system

    Results on data-driven controllers for unknown nonlinear systems

    Get PDF
    The big data revolution is deeply changing the way we understand and analyze natural phenomena around us. In the field of control engineering, data-driven control enables researchers to explore new intelligent algorithms to model and control complex dynamical systems. Data-driven control is based on the paradigm of learning controllers of an unknown dynamical system by directly using data. The underlying idea is that information about the model can be gathered from experiments, bypassing completely the identification step, which can be impractical or too costly. This thesis presents data-driven control solutions for different families of unknown dynamical systems, with a focus on both linear and special classes of nonlinear ones. In the first part of the thesis, we consider the linear quadratic regulator problem for linear time-invariant discrete-time systems. The system is assumed to be unknown and information on the system is given by a finite set of data. This allows determining the optimal control law in one shot, with no intermediate identification step. Secondly, we present an online algorithm for learning controllers applied to switched linear systems. By collecting data on the fly, the control mechanism can capture any changes in the dynamics of the plant and adapt itself accordingly to achieve stabilization of the running dynamics. Finally, we derive data-driven methods for a more general class of nonlinear systems via nonlinearity cancellation. To this end, we make use of a "dictionary" of nonlinear terms that includes the nonlinearities of the unknown system
    corecore