71,814 research outputs found

    Concentration profiles for fine and coarse sediments suspended by waves over ripples: An analytical study with the 1-DV gradient diffusion model

    Full text link
    Field and laboratory measurements of suspended sediments over wave ripples show, for time-averaged concentration profiles in semi-log plots, a contrast between upward convex profiles for fine sand and upward concave profiles for coarse sand. Careful examination of experimental data for coarse sand shows a near-bed upward convex profile beneath the main upward concave profile. Available models fail to predict these two profiles for coarse sediments. The 1-DV gradient diffusion model predicts the main upward concave profile for coarse sediments thanks to a suitable β\beta(y)-function (where β\beta is the inverse of the turbulent Schmidt number and y is the distance from the bed). In order to predict the near-bed upward convex profile, an additional parameter {\alpha} is needed. This parameter could be related to settling velocity (α\alpha equal to inverse of dimensionless settling velocity) or to convective sediment entrainment process. The profiles are interpreted by a relation between second derivative of the logarithm of concentration and derivative of the product between sediment diffusivity and α\alpha

    The influence of convective exchanges on coandã effect

    Get PDF
    Modeling Coandã effect has been a fundamental issue in fluid dynamic research in the XX century. It has lost some interest because of the improvement in CFD, even if it could be still important in the area of the preliminary design of aerodynamic devices that benefits of fluid deflection by convex surfaces. An effective model of Coandã effect has not been defined, and fundamental questions are still open. The influence of convective heat exchange on Coandã adhesion of a fluid stream on a convex surface in the presence of a temperature gradient between the fluid and the convex surface is a problem, which affects many practical cases, but it is still marginally approached by scientific literature. This paper aims to start an effective research direction on the effects of convective heat exchange on Coandã effect. It approaches the problem with a set of CFD simulations. It analyses the previous hypotheses, which are based on Prandtl number and evidences the need of a more effective model that accounts also for the Reynolds number
    corecore