2,198 research outputs found

    Convex Relaxation for Combinatorial Penalties

    Get PDF
    In this paper, we propose an unifying view of several recently proposed structured sparsity-inducing norms. We consider the situation of a model simultaneously (a) penalized by a set- function de ned on the support of the unknown parameter vector which represents prior knowledge on supports, and (b) regularized in Lp-norm. We show that the natural combinatorial optimization problems obtained may be relaxed into convex optimization problems and introduce a notion, the lower combinatorial envelope of a set-function, that characterizes the tightness of our relaxations. We moreover establish links with norms based on latent representations including the latent group Lasso and block-coding, and with norms obtained from submodular functions.Comment: 35 pag

    Combinatorial Penalties: Which structures are preserved by convex relaxations?

    Get PDF
    We consider the homogeneous and the non-homogeneous convex relaxations for combinatorial penalty functions defined on support sets. Our study identifies key differences in the tightness of the resulting relaxations through the notion of the lower combinatorial envelope of a set-function along with new necessary conditions for support identification. We then propose a general adaptive estimator for convex monotone regularizers, and derive new sufficient conditions for support recovery in the asymptotic setting

    Structured Sparsity: Discrete and Convex approaches

    Full text link
    Compressive sensing (CS) exploits sparsity to recover sparse or compressible signals from dimensionality reducing, non-adaptive sensing mechanisms. Sparsity is also used to enhance interpretability in machine learning and statistics applications: While the ambient dimension is vast in modern data analysis problems, the relevant information therein typically resides in a much lower dimensional space. However, many solutions proposed nowadays do not leverage the true underlying structure. Recent results in CS extend the simple sparsity idea to more sophisticated {\em structured} sparsity models, which describe the interdependency between the nonzero components of a signal, allowing to increase the interpretability of the results and lead to better recovery performance. In order to better understand the impact of structured sparsity, in this chapter we analyze the connections between the discrete models and their convex relaxations, highlighting their relative advantages. We start with the general group sparse model and then elaborate on two important special cases: the dispersive and the hierarchical models. For each, we present the models in their discrete nature, discuss how to solve the ensuing discrete problems and then describe convex relaxations. We also consider more general structures as defined by set functions and present their convex proxies. Further, we discuss efficient optimization solutions for structured sparsity problems and illustrate structured sparsity in action via three applications.Comment: 30 pages, 18 figure

    Differentially Private Empirical Risk Minimization with Sparsity-Inducing Norms

    Get PDF
    Differential privacy is concerned about the prediction quality while measuring the privacy impact on individuals whose information is contained in the data. We consider differentially private risk minimization problems with regularizers that induce structured sparsity. These regularizers are known to be convex but they are often non-differentiable. We analyze the standard differentially private algorithms, such as output perturbation, Frank-Wolfe and objective perturbation. Output perturbation is a differentially private algorithm that is known to perform well for minimizing risks that are strongly convex. Previous works have derived excess risk bounds that are independent of the dimensionality. In this paper, we assume a particular class of convex but non-smooth regularizers that induce structured sparsity and loss functions for generalized linear models. We also consider differentially private Frank-Wolfe algorithms to optimize the dual of the risk minimization problem. We derive excess risk bounds for both these algorithms. Both the bounds depend on the Gaussian width of the unit ball of the dual norm. We also show that objective perturbation of the risk minimization problems is equivalent to the output perturbation of a dual optimization problem. This is the first work that analyzes the dual optimization problems of risk minimization problems in the context of differential privacy

    Structured sparsity-inducing norms through submodular functions

    Get PDF
    Sparse methods for supervised learning aim at finding good linear predictors from as few variables as possible, i.e., with small cardinality of their supports. This combinatorial selection problem is often turned into a convex optimization problem by replacing the cardinality function by its convex envelope (tightest convex lower bound), in this case the L1-norm. In this paper, we investigate more general set-functions than the cardinality, that may incorporate prior knowledge or structural constraints which are common in many applications: namely, we show that for nondecreasing submodular set-functions, the corresponding convex envelope can be obtained from its \lova extension, a common tool in submodular analysis. This defines a family of polyhedral norms, for which we provide generic algorithmic tools (subgradients and proximal operators) and theoretical results (conditions for support recovery or high-dimensional inference). By selecting specific submodular functions, we can give a new interpretation to known norms, such as those based on rank-statistics or grouped norms with potentially overlapping groups; we also define new norms, in particular ones that can be used as non-factorial priors for supervised learning

    Iterative Log Thresholding

    Full text link
    Sparse reconstruction approaches using the re-weighted l1-penalty have been shown, both empirically and theoretically, to provide a significant improvement in recovering sparse signals in comparison to the l1-relaxation. However, numerical optimization of such penalties involves solving problems with l1-norms in the objective many times. Using the direct link of reweighted l1-penalties to the concave log-regularizer for sparsity, we derive a simple prox-like algorithm for the log-regularized formulation. The proximal splitting step of the algorithm has a closed form solution, and we call the algorithm 'log-thresholding' in analogy to soft thresholding for the l1-penalty. We establish convergence results, and demonstrate that log-thresholding provides more accurate sparse reconstructions compared to both soft and hard thresholding. Furthermore, the approach can be directly extended to optimization over matrices with penalty for rank (i.e. the nuclear norm penalty and its re-weigthed version), where we suggest a singular-value log-thresholding approach.Comment: 5 pages, 4 figure

    Exact solutions to a class of stochastic generalized assignment problems

    Get PDF
    This paper deals with a stochastic Generalized Assignment Problem with recourse. Only a random subset of the given set of jobs will require to be actually processed. An assignment of each job to an agent is decided a priori, and once the demands are known, reassignments can be performed if there are overloaded agents. We construct a convex approximation of the objective function that is sharp at all feasible solutions. We then present three versions of an exact algorithm to solve this problem, based on branch and bound techniques, optimality cuts, and a special purpose lower bound. numerical results are reported.
    • 

    corecore