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Abstract

In this paper, we propose an unifying view of several recently proposed structured sparsity-
inducing norms. We consider the situation of a model simultaneously (a) penalized by a set-
function defined on the support of the unknown parameter vector which represents prior knowl-
edge on supports, and (b) regularized in `p-norm. We show that the natural combinatorial
optimization problems obtained may be relaxed into convex optimization problems and intro-
duce a notion, the lower combinatorial envelope of a set-function, that characterizes the tightness
of our relaxations. We moreover establish links with norms based on latent representations in-
cluding the latent group Lasso and block-coding, and with norms obtained from submodular
functions.

1 Introduction

The last years have seen the emergence of the field of structured sparsity, which aims at identifying
a model of small complexity given a priori knowledge on its possible structure.

Various regularizations, in particular convex, have been proposed that formalized the notion that
prior information can be expressed through functions encoding the set of possible or encouraged
supports1 in the model. Several convex regularizers for structured sparsity arose as generalizations
of the group Lasso (Yuan and Lin, 2006) to the case of overlapping groups (Jenatton et al., 2011a;
Jacob et al., 2009; Mairal et al., 2011), in particular to tree-structured groups (Zhao et al., 2009;
Kim and Xing, 2010; Jenatton et al., 2011b). Other formulations have been considered based on
variational formulations (Micchelli et al., 2011), the perspective of multiple kernel learning (Bach
et al., 2012), submodular functions (Bach, 2010) and norms defined as convex hulls (Obozinski
et al., 2011; Chandrasekaran et al., 2010). Non convex approaches include He and Carin (2009);
Baraniuk et al. (2010); Huang et al. (2011). We refer the reader to Huang et al. (2011) for a concise
overview and discussion of the related literature and to Bach et al. (2012) for a more detailed tutorial
presentation.

In this context, and given a model parametrized by a vector of coefficients w ∈ RV with V =
{1, . . . , d}, the main objective of this paper is to find an appropriate way to combine together
combinatorial penalties, that control the structure of a model in terms of the sets of variables

1By support, we mean the set of indices of non-zero parameters.
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allowed or favored to enter the function learned, with continuous regularizers—such as `p-norms,
that control the magnitude of their coefficients, into a convex regularization that would control both.

Part of our motivation stems from previous work on regularizers that “convexify” combinatorial
penalties. Bach (2010) proposes to consider the tightest convex relaxation of the restriction of a
submodular penalty to a unit `∞-ball in the space of model parameters w ∈ Rd. However, this
relaxation scheme implicitly assumes that the coefficients are in a unit `∞-ball; then, the relaxation
obtained induces clustering artifacts of the values of the learned vector. It would thus seem desirable
to propose relaxation schemes that do not assume that coefficient are bounded but rather to control
continuously their magnitude and to find alternatives to the `∞-norm. Finally the class of functions
considered is restricted to submodular functions.

In this paper, we therefore consider combined penalties of the form mentioned above and propose
first an appropriate convex relaxation in Section 2; the properties of general combinatorial functions
preserved by the relaxation are captured by the notion of lower combinatorial envelope introduced
in Section 2.2. Section 3 relates the convex regularization obtained to the latent group Lasso and
to set-cover penalties, while Section 4 provides additional examples, such as the exclusive Lasso.
We discuss in more details the case of submodular functions in Section 6 and propose for that case
efficient algorithms and a theoretical analysis. Finally, we present some experiments in Section 7.

Yet another motivation is to follow loosely the principle of two-part or multiple-part codes from
MDL theory (Rissanen, 1978). In particular if the model is parametrized by a vector of parameters
w, it is possible to encode (an approximation of) w itself with a two-part code, by encoding first
the support Supp(w) —or set of non-zero values— of w with a code length of F (Supp(w)) and by
encoding the actual values of w using a code based on a log prior distribution on the vector w that
could motivate the choice of an `p-norm as a surrogate for the code length. This leads naturally to
consider penalties of the form µF (Supp(w)) + ν‖w‖pp and to find appropriate notions of relaxation.

Notations. When indexing vectors of Rd with a set A or B in exponent, xA and xB ∈ Rd refer to
two a priori unrelated vectors; by contrast, when using A as an index, and given a vector x ∈ Rd,
xA denotes the vector of Rd such that [xA]i = xi, i ∈ A and [xA]i = 0, i /∈ A. If s is a vector in Rd,
we use the shorthand s(A) :=

∑
i∈A si and |s| denotes the vector whose elements are the absolute

values |si| of the elements si in s. For p ≥ 1, we define q through the relation 1
p + 1

q = 1. The

`q-norm of a vector w will be noted ‖w‖q =
(∑

i w
q
i

)1/q
. For a function f : Rd → R, we will denote

by f∗ is Fenchel-Legendre conjugate. We will write R+ for R+ ∪ {+∞}.

2 Penalties and convex relaxations

Let V = {1, . . . , d} and 2V = {A | A ⊂ V } its power-set. We will consider positive-valued set-
functions of the form F : 2V → R+ such that F (∅) = 0 and F (A) > 0 for all A 6= ∅. We do not
necessarily assume that F is non-decreasing, even if it would a priori be natural for a penalty function
of the support. We however assume that the domain of F , defined as D0 := {A | F (A) <∞}, covers
V , i.e., satisfies ∪A∈D0A = V (if F is non-decreasing, this just implies that it should be finite on
singletons). We will denote by ιx∈S the indicator function of the set S, taking value 0 on the set
and +∞ outside. We will write [[k1, k2]] to denote the discrete interval {k1, . . . , k2}.

With the motivations of the previous section, and denoting by Supp(w) the set of non-zero coefficients
of a vector w, we consider a penalty involving both a combinatorial function F and `p-regularization:

pen : w 7→ µF (Supp(w)) + ν ‖w‖pp, (1)
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where µ and ν are positive scalar coefficients. Since such non-convex discontinuous penalizations are
untractable computationally, we undertake to construct an appropriate convex relaxation. The most
natural convex surrogate for a non-convex function, say A, is arguably its convex envelope (i.e., its
tightest convex lower bound) which can be computed as its Fenchel-Legendre bidual A∗∗. However,
one relatively natural requirement for a regularizer is to ask that it be also positively homogeneous
(p.h. ) since this leads to formulations that are invariant by rescaling of the data. Our goal will
therefore be to construct the tightest positively homogeneous convex lower bound of the penalty
considered.

Now, it is a classical result that, given a function A, its tightest p.h. (but not necessarily convex)

lower bound Ah is Ah(w) = infλ>0
A(λw)
λ (see Rockafellar, 1970, p.35).

This is instrumental here given the following proposition:

Proposition 1. Let A : Rd → R+ be a real valued function, Ah defined as above. Then C, the
tightest positively homogeneous and convex lower bound of A, is well-defined and C = A∗∗h .

Proof. The set of convex p.h. lower bounds of A is non-empty (since it contains the constant zero
function) and stable by taking pointwise maxima. Therefore it has a unique majorant, which we call
C. We have for all w ∈ Rd, A∗∗h (w) 6 C(w) 6 A(w), by definition of C and the fact that Ah is an
p.h. lower bound on A. We thus have for all λ > 0, A∗∗h (λw)λ−1 6 C(λw)λ−1 6 A(λw)λ−1, which
implies that for all w ∈ Rd, A∗∗h (w) 6 C(w) 6 Ah(w). Since C is convex, we must have C = A∗∗h ,
hence the desired result.

Using its definition we can easily compute the tightest positively homogeneous lower bound of the
penalization of Eq. (1), which we denote penh:

penh(w) = inf
λ>0

µ

λ
F (Supp(w)) + ν λp−1 ‖w‖pp.

Setting the gradient of the objective to 0, one gets that the minimum is obtained for

λ =
(
µq
νp

)1/p
F (Supp(w))1/p ‖w‖−1

p , and that

penh(w) = (qµ)1/q (pν)1/p Θ(w),

where we introduced the notation

Θ(w) := F (Supp(w))1/q ‖w‖p.

Up to a constant factor depending on the choices of µ and ν, we are therefore led to consider the
positively homogeneous penalty Θ we just defined, which combines the two terms multiplicatively.
Consider the norm Ωp (or ΩFp if a reference to F is needed) whose dual norm2 is defined as

Ω∗p(s) := max
A⊂V,A6=∅

‖sA‖q
F (A)1/q

. (2)

We have the following result:

Proposition 2 (Convex relaxation). The norm Ωp is the convex envelope of Θ.

Proof. Denote Θ(w) = ‖w‖p F (Supp(w))1/q, and compute its Fenchel conjugate:

Θ∗(s) = max
w∈Rd

w>s− ‖w‖p F (Supp(w))1/q

= max
A⊂V

max
wA∈R|A|∗

w>AsA − ‖wA‖p F (A)1/q

= max
A⊂V

ι{‖sA‖q6F (A)1/q} = ι{Ω∗p(s)61},

2The assumptions on the domain D0 of F and on the positivity of F indeed guarantee that Ω∗p is a norm.
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Figure 1: Penalties in 2D From left to right: the graph of the penalty pen, the graph of penalty
penh with p = 2, and the graph of the norm ΩF2 in blue overlaid over graph of penh, for the
combinatorial function F : 2V → R+, with F (∅) = 0, F ({1}) = F ({2}) = 1 and F ({1, 2}) = 1.8.

where ι{s∈S} is the indicator of the set S, that is the function equal to 0 on S and +∞ on Sc. The
Fenchel bidual of Θ, i.e., its largest (thus tightest) convex lower bound, is therefore exactly Ωp.

Note that the function F is not assumed submodular in the previous result. Since the function
Θ depends on w only through |w|, by symmetry, the norm Ωp is also a function of |w|. Given
Proposition 1, we have the immediate corollary:

Corollary 1 (Two parts-code relaxation). Let p > 1. The norm w 7→ (qµ)1/q(pν)1/p Ωp(w) is the
tightest convex positively homogeneous lower bound of the function w 7→ µF (Supp(w)) + ν‖w‖pp.

The penalties and relaxation results considered in this section are illustrated on Figure 1.

2.1 Special cases.

Case p = 1. In that case, letting dk = maxA3k F (A), the dual norm is Ω∗1(s) = maxk∈V |sk|/dk so
that Ω1(w) =

∑
k∈V dk |wk| is always a weighted `1-norm. But regularizing with a weighted `1-norm

leads to estimators that can potentially have all sparsity patterns possible (even if some are obviously
privileged) and in that sense a weighted `1-norm cannot encode hard structural constraints on the
patterns. Since this means in other words that the `1-relaxations essentially lose the combinatorial
structure of allowed sparsity patterns possibly encoded in F , we focus, from now on, on the case
p > 1.

Lasso, group Lasso. Ωp instantiates as the `1, `p and `1/`p-norms for the simplest functions:

• If F (A) = |A|, then Ωp(w) = ‖w‖1, since Ω∗p(s) = maxA
‖sA‖q
|A|1/q = ‖s‖∞. It is interesting that

the cardinality function is always relaxed to the `1-norm for all `p-relaxations, and is not an
artifact of the traditional relaxation on an `∞-ball.

• If F (A) = 1{A6=∅} , then Ωp(w) = ‖w‖p, since Ω∗p(s) = maxA ‖sA‖q = ‖s‖q.

• If F (A) =
∑g
j=1 1{A∩Gj 6=∅}, for (Gj)j∈{1,...,g} a partition of V , then Ωp(w) =

∑g
j=1 ‖wGj‖p

is the group Lasso or `1/`p-norm (Yuan and Lin, 2006). This result provides a principled
derivation for the form of these norms, which did not exist in the literature. For groups which
do not form a partition, this identity does in fact not hold in general for p <∞, as we discuss
in Section 4.
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Submodular functions and p = ∞. For a submodular function F and in the p = ∞ case, the
norm ΩF∞ that we derived actually coincides with the relaxation proposed by Bach (2010), and as
showed in that work, ΩF∞(w) = f(|w|), where f is a function associated with F and called the Lovász
extension of F . We discuss the case of submodular functions in detail in Section 6.

2.2 Lower combinatorial envelope

The fact that when F is a submodular function, ΩF∞ is equal to the Lovász extension f on the
positive orthant provides a guarantee on the tightness of the relaxation. Indeed f is called an
“extension” because ∀A ⊂ 2V , f(1A) = F (A), so that f can be seen to extend the function F to
Rd; as a consequence, ΩF∞(1A) = f(1A) = F (A), which means that the relaxation is tight for all w
of the form w = c 1A, for any scalar constant c ∈ R and any set A ⊂ V . If F is not submodular,
this property does not necessarily hold, thereby suggesting that the relaxation could be less tight in
general. To characterize to which extend this is true, we introduce a couple of new concepts.

Much of the properties of Ωp, for any p > 1, are captured by the unit ball of Ω∗∞ or its intersection
with the positive orthant. In fact, as we will see in the sequel, the `∞ relaxation plays a particular
role, to establish properties of the norm, to construct algorithms and for the statistical analysis,
since it it reflects most directly the combinatorial structure of the function F .

We define the canonical polyhedron3 associated to the combinatorial function as the polyhedron PF
defined by

PF = {s ∈ Rd, ∀A ⊂ V, s(A) ≤ F (A)}.

By construction, it is immediate that the unit ball of Ω∗∞ is {s ∈ Rd | |s| ∈ PF }.

From this polyhedron, we construct a new set-function which restitutes the features of F that are
captured by PF :

Definition 2 (Lower combinatorial envelope). Define the lower combinatorial envelope (LCE) of
F as the set-function F− defined by:

F−(A) = max
s∈PF

s(A).

By construction, even when F is not monotonic, F− is always non-decreasing (because PF ⊂ Rd+).

One of the key properties of the lower combinatorial envelope is that, as shown in the next lemma,
ΩF∞ is an extension of F− in the same way that the Lovász extension is an extension of F when F
is submodular.

Lemma 1. (Extension property) ΩF∞(1A) = F−(A).

Proof. From the definition of ΩF∞, PF and F−, we get: ΩF∞(1A) = max
ΩF
∞
∗(s)≤1

1>A s = max
s∈PF

s>1A =

F−(A)

Functions that are close to their LCE have in that sense a tighter relaxation than others.

A second important property is that a function F and its LCE share the same canonical polyhedron.
This will result as a immediate corollary from the following lemma:

Lemma 2. ∀s ∈ RV+, maxA⊂V
s(A)
F (A) = maxA⊂V

s(A)
F−(A) .

3The reader familiar with submodular functions will recognize that the canonical polyhedron generalizes the sub-
modular polyhedron usually defined for these functions.
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F-({1}) F({1})

F({1})

F({1})

F({2})
F({2})F({2})

F({1,2})

F({1,2})
F({1,2})

F-({1,2})

Figure 2: Intersection of the canonical polyhedron with the positive orthant for three different
functions F . Full lines materialize the inequalities s(A) ≤ F (A) that define the polyhedron. Dashed
line materialize the induced constraints s(A) ≤ F−(A) that results from all constraints s(B) ≤
F (B), B ∈ 2V . From left to right: (i) DF = 2V and F− = F = F+; (ii) DF = {{2}, {1, 2}} and
F−({1}) < F ({1}); (iii) DF = {{1}, {2}} corresponding to a weighted `1-norm.

Proof. Given that for all A, F−(A) 6 F (A), the left hand side is always smaller or equal to the right
hand side. We now reason by contradiction. Assume that there exists s such that ∀A ⊂ V, s(A) ≤
νF (A) but that there exists B ⊂ V , s(B) > νF (B), then s′ = 1

ν s satisfies ∀A ⊂ V, s′(A) ≤ F (A).
By definition of F−, the latter implies that F−(B) ≥ s′(B) = 1

ν s(B) > 1
ν · νF (B), where the last

inequality results from the choice of this particular B. This would imply F−(B) > F (B), but by
definition of F−, we have F−(A) ≤ F (A) for all A ⊂ V .

Corollary 3. PF = PF− .

But the sets {w ∈ Rd | |w| ∈ PF } and {w ∈ Rd | |w| ∈ PF−} are respectively the unit balls of ΩF∞
and Ω

F−
∞ . As a direct consequence, we have:

Lemma 3. For all p ≥ 1, ΩFp = Ω
F−
p .

By construction, F− is the largest function which lower bounds F , and has the same `p-relaxation
as F , hence the term of lower combinatorial envelope.

Figure 2 illustrates the fact that F and F− share the same canonical polyhedron and that the value
of F−(A) is determined by the values that F takes on other sets. This figure also suggests that
some constraints { s(A) ≤ F (A) } can never be active and could therefore be removed. This will be
formalized in Section 2.3.

To illustrate the relevance of the concept of lower combinatorial envelope, we compute it for a specify
combinatorial function, the range function, and show that it enables us to answer the question of
whether the relaxation would be good in this case.

Example 1 (Range function). Consider, on V = [1, d], the range function F : A 7→ max(A) −
min(A)+1 where min(A) (resp. max(A)) is the smallest (resp. largest) element in A. A motivation
to consider this function is that it induces the selection of supports that are exactly intervals. Since
F ({i}) = 1, i ∈ V , then for all s ∈ PF , we have s(A) ≤ |A| ≤ F (A). But this implies that DF is the
set of singletons and that F−(A) = |A|, so that ΩF is the `1-norm and is oblivious of the structure
encoded in F .

As we see from this example, the lower combinatorial envelope can be interpreted as the combina-
torial function which the relaxation is actually able to capture.
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2.3 Upper combinatorial envelope

Let F be a set-function and PF its canonical polyhedron. In this section, we follow an intuition
conveyed by Figure 2 and find a compact representation of F : the polyhedron PF has in many cases
a number of faces which much smaller than 2d. We formalize this in the next lemma.

Lemma 4. There exists a minimal subset DF of 2V such that for s ∈ Rd+,

s ∈ PF ⇔ (∀A ∈ DF , s(A) ≤ F (A)).

Proof. To prove the result, we define as in Obozinski et al. (2011, Sec. 8.1) the notion of redundant
sets: we say that a set A is redundant for F if

∃A1, . . . , Ak ∈ 2V \{A}, (∀i, s(Ai) ≤ F (Ai))⇒ (s(A) ≤ F (A)).

Consider the set DF of all non redundant sets.

We will show that, in fact, A is redundant for F if and only if

∃A1, . . . , Ak ∈ DF \{A}, (∀i, s(Ai) ≤ F (Ai))⇒ (s(A) ≤ F (A)),

which proves the lemma.

Indeed, we can use a peeling argument to remove all redundant sets one by one and show recursively
that the inequality constraint associated with a given redundant set is still implied by all the ones we
have not removed yet. The procedure stops when we have reached the smallest set DF of constraints
implying all the other ones.

We call DF the core set of F . It corresponds to the set of faces of dimension d− 1 of PF .

This notion motivates the definition of a new set-function:

Definition 4. (Upper combinatorial envelope) We call upper combinatorial envelope (UCE) the
function F+ defined by F+(A) = F (A) for A ∈ DF and F+(A) =∞ otherwise.

As the reader might expect at this point, F+ provides a compact representation which captures all
the information about F that is preserved in the relaxation:

Proposition 3. F, F− and F+ all define the same canonical polyhedron PF− = PF = PF+ and share
the same core set DF . Moreover, ∀A ∈ DF , F−(A) = F (A) = F+(A).

Proof. To show that Ω
F+
p = ΩFp we just need to show PF+ = PF . By the definition of F+ we have

PF+
= {s ∈ Rd | s(A) ≤ F (A), A ∈ DF } but the previous lemma precisely states that the last set is

equal to PF .

We now argue that, for all A ∈ DF , F−(A) = F (A) = F+(A). Indeed, the equality F (A) =
F+(A) holds by definition, and, for all A ∈ DF , we need to have F (A) = F−(A) because F−(A) =
maxs∈PF

s(A) = maxs∈PF+
s(A) and if we had F−(A) < F (A), this would imply that A is redundant.

Finally, the term “upper combinatorial envelope” is motivated by the following lemma:

Lemma 5. F+ is the pointwise supremum of all the set-functions H that are upper bounds on F
and such that PH = PF .
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Proof. We need to show that we have F+ : A 7→ sup{H(A) | H ∈ EF } with

EF := {H : 2V → R+ s.t. H ≥ F and PH = PF }.

But for any H ∈ EF , PH = PF implies that H− = F− by definition of the lower combinatorial
envelope. Moreover we have DH ⊂ DF since if A /∈ DF , then A is redundant for F , i.e. there
are A1, . . . , Ak ∈ DF such that

(
∀i, s(Ai) ≤ F−(Ai)

)
⇒ (s(A) ≤ F (A)), but F (A) ≤ H(A), and

thus, since F−(Ai) = H−(Ai), this implies that A is redundant for H, i.e., A /∈ DH . Now, assume
there is A ∈ DF ∩DcH . Since A is redundant for H then there are A1, . . . , Ak in DH\{A} such that(
∀i, s(Ai) ≤ H(Ai)

)
⇒ (s(A) ≤ H(A)), but since Ai ∈ DH ⊂ DF we have H(Ai) = H−(Ai) =

F−(Ai) and since A ∈ DF we also have F (A) = F−(A) so either
(
∀A′ ∈ DH , s(A′) ≤ F−(A′)

)
⇒

(s(A) ≤ F−(A)), so that A is redundant, which is excluded, or since H−(A) = maxs∈PH
s(A) =

maxs: s(A′)≤F−(A′), A′∈DH
s(A), we then have H−(A) > F−(A), which is also impossible. So we

necessarily have DH = DF . To conclude the proof we just need to show that F+ ∈ EF and that
F+ ≥ H for all H ∈ EF ; this inequality is trivially satisfied for A /∈ DF+

, and since DH = DF+
, for

A ∈ DF+
, we have F+(A) = F−(A) = H−(A) = H(A).

The picture that emerges at this point from the results shown is rather simple: any combinatorial
function F defines a polyhedron PF whose faces of dimension d − 1 are indexed by a set DF ⊂ 2V

that we called the core set. In symbolic notation: PF = {s ∈ Rd | s(A) ≤ F (A), A ∈ DF }. All the
combinatorial functions which are equal to F on DF and which otherwise take values that are larger
than its lower combinatorial envelope F−, have the same `p tightest positively homogeneous convex
relaxation ΩFp , the smallest such function being F− and the largest F+. Moreover F−(A) = ΩF∞(A),

so that ΩF∞ is an extension of F−. By construction, and even if F is a non-decreasing function, F−
is non-decreasing, while F+ is obviously not a decreasing function, even though its restriction to
DF is. It might therefore seem an odd set-function to consider; however if DF is a small set, since

ΩFp = Ω
F+
p , and it provides a potentially much more compact representation of the norm, which we

now relate to a norm previously introduced in the literature.

3 Latent group Lasso, block-coding and set-cover penalties

The norm Ωp is actually not a new norm. It was introduced from a different point of view by Jacob
et al. (2009) (see also Obozinski et al., 2011) as one of the possible generalizations of the group Lasso
to the case where groups overlap.

To establish the connection, we now provide a more explicit form for Ωp, which is different from the
definition via its dual norm which we have exploited so far.

We consider models that are parameterized by a vector w ∈ RV and associate to them latent variables
that are tuples of vectors of RV indexed by the power-set of V . Precisely, with the notation

V =
{
v = (vA)A⊂V ∈

(
RV
)2V

s.t. Supp(vA) ⊂ A
}
,

we define the norms Ωp as

Ωp(w) = min
v∈V

∑
A⊂V

F (A)
1
q ‖vA‖p s.t. w =

∑
A⊂V

vA. (3)

As suggested by notations and as first proved for p = 2 by Jacob et al. (2009), we have:

Lemma 6. Ωp and Ω∗p are dual to each other.
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An elementary proof of this result is provided in Obozinski et al. (2011)4. We propose a slightly
more abstract proof of this result in appendix A using explicitly the fact that Ωp is defined as an
infimal convolution.

We will refer to this norm Ωp as the latent group Lasso since it is defined by introducing latent
variables vA that are themselves regularized instead of the original model parameters. We refer the
reader to Obozinski et al. (2011) for a detailed presentation of this norm, some of its properties and
some support recovery results in terms of the support of the latent variables. In Jacob et al. (2009)
the expansion (3) did not involve all terms of the power-set but only a subcollection of sets G ⊂ 2V .
The notion of redundant set discussed in Section 2.3 was actually introduced by Obozinski et al.
(2011, Sec. 8.1) and the set G could be viewed as the core set DF . A result of Obozinski et al. (2011)
for p = 2 generalizes immediately to other p: the unit ball of Ωp can be shown to be the convex hull
of the sets DA = {w ∈ Rd | ‖wA‖pp ≤ F (A)−1/q}. This is illustrated in Figure 3.

The motivation of Jacob et al. (2009) was to find a convex regularization which would induce sparsity
patterns that are unions of groups in G and explain the estimated vector w as a combination of a
small number of latent components, each supported on one group of G. The motivation is very
similar in Huang et al. (2011) who consider an `0-type penalty they call block coding, where each
support is penalized by the minimal sum of the coding complexities of a certain number of elementary
sets called “blocks” which cover the support. In both cases the underlying combinatorial penalty is
the minimal weighted set cover defined for a set B ⊂ V by:

F̃ (B) = min
(δA)A⊂V

∑
A⊂V

F (A) δA s.t.
∑
A⊂V

δA1A ≥ 1B , δA ∈ {0, 1}, A ⊂ V .

While the norm proposed by Jacob et al. (2009) can be viewed as a form of “relaxation” of the
cover-set problem, a rigorous link between the `0 and convex formulation is missing. We will make
this statement rigorous through a new interpretation of the lower combinatorial envelope of F .

Indeed, assume w.l.o.g. that w ∈ Rd+. For x, y ∈ RV , we write x ≥ y if xi ≥ yi for all i ∈ V . Then,

Ω∞(w) = min
v∈V

∑
A⊂V

F (A)‖vA‖∞ s.t.
∑
A⊂V

vA ≥ w

= min
δA∈R+

∑
A⊂V

F (A) δA s.t.
∑
A⊂V

δA1A ≥ w,

since if (vA)A⊂V is a solution so is (δA1A)A⊂V with δA = ‖vA‖∞. We then have

F−(B) = min
(δA)

∑
A⊂V

F (A) δA, s.t.
∑
A⊂V

δA1A ≥ 1B , δA ∈ [0, 1], A ⊂ V , (4)

because constraining δ to the unit cube does not change the optimal solution, given that 1B ≤ 1.
But the optimization problem in (4) is exactly the fractional weighted set-cover problem (Lovász,
1975), a classical relaxation of the weighted cover set problem in Eq. (4).

Combining Proposition 2 with the fact that F−(A) is the fractional weighted set-cover, now yields:

Theorem 5. Ωp(w) is the tightest convex relaxation of the function w 7→ ‖w‖p F̃ (Supp(w))1/q where

F̃ (Supp(w)) is the weighted set-cover of the support of w.

Proof. We have F−(A) ≤ F̃ (A) ≤ F (A) so that, since F− is the lower combinatorial envelope of F ,

it is also the lower combinatorial envelope of F̃ , and therefore Ω
F−
p = ΩF̃p = ΩFp .

4The proof in Obozinski et al. (2011) addresses the p = 2 case but generalizes immediately to other values of p.
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(1,1)/F({1,2})

(1,0)/F({1})

(0,1)/F({2})
(0,1)/  F({2}) (1,1)/  2F({1,2})

(1,0)/  F({1})

Figure 3: Unit balls in R2 for four combinatorial functions (actually all submodular) on two variables.
Top left and middle row: p =∞; top right and bottom row: p = 2. Changing values of F may make
some of the extreme points disappear. All norms are hulls of a disk and points along the axes, whose
size and position is determined by the values taken by F . On top row: F (A) = F−(A) = |A|1/2 (all
possible extreme points); and from left to right on the middle and bottom rows: F (A) = |A| (leading
to ‖ · ‖1), F (A) = F−(A) = min{|A|, 1} (leading to ‖ · ‖p), F (A) = F−(A) = 1

21{A∩{2}6=∅}+ 1{A 6=∅}.

This proves that the norm ΩFp proposed by Jacob et al. (2009) is indeed in a rigorous sense a
relaxation of the block-coding or set-cover penalty.

Example 2. To illustrate the above results consider the block-coding scheme for subsets of V =
{1, 2, 3} with blocks consisting only of pairs, i.e., chosen from the collection D0 :=

{
{1, 2}, {2, 3}, {1, 3}

}
with costs all equal to 1. The following table lists the values of F , F− and F̃ :

∅ {1} {2} {3} {1, 2} {2, 3} {1, 3} {1, 2, 3}
F 0 ∞ ∞ ∞ 1 1 1 ∞
F̃ 0 1 1 1 1 1 1 2
F− 0 1 1 1 1 1 1 3/2

Here, F is equal to its UCE (except that F+(∅) =∞) and takes therefore non trivial values only on
the core set DF = D0. All non-empty sets except V can be covered by exactly one set, which explains
the cases where F− and F̃ take the value one. F̃ (V ) = 2 since V is covered by any pair of blocks
and a slight improvement is obtained if fractional covers is allowed since for δ1 = δ2 = δ3 = 1

2 , we
have 1V = δ1 1{2,3} + δ2 1{3,1} + δ3 1{1,2} and therefore F−(V ) = δ1 + δ2 + δ3 = 3

2 .

The interpretation of the LCE as the value of a minimum fractional weighted set cover suggests a
new interpretation of F+ (or equivalently of DF ) as defining the smallest set of blocks (DF ) and
their costs, that induce a fractional set over problem with the same optimal value.
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It is interesting to note (but probably not a coincidence) that it is Lovász who introduced the
concept of optimal fractional weighted set cover, while we just showed that the value of that cover

is precisely F−, i.e., the combinatorial function which is extended by Ω
F+
∞ = Ω

F−
∞ and which, if F+

is submodular is equal to the Lovász extension.

The interpretation of F− as the value of a minimum fractional weighted cover set problem allows us
also to show a result which is dual to the property of LCEs, and which we now present.

3.1 Largest convex positively homogeneous function with same combina-
torial restriction

By symmetry with the characterization of the lower combinatorial envelope as the smallest combi-
natorial function that has the same tightest convex and positively homogeneous (p.h.) relaxation as
a given combinatorial function F , we can, given a convex positively homogeneous function g, define
the combinatorial function F : A 7→ g(1A), which by construction, is the combinatorial function
which g extends (in the sense of Lovász ) to Rd+, and ask if there exists a largest convex and p.h.
function g+ among all such functions. It turns out that this problem is well-posed if the question
is restricted to functions that are also coordinate-wise non-decreasing. Perhaps not surprisingly, it
is then the case that the largest convex p.h. function extending the same induced combinatorial
function is precisely ΩF∞, as we show in the next lemma.

Lemma 7. (Largest convex positively homogeneous extension) Let g be a convex, p.h. and coordinate-
wise non-decreasing function defined on Rd+. Define F as F : A 7→ g(1A) and denote by F− its lower
combinatorial envelope.
Then F = F− and ∀w ∈ Rd, g(|w|) ≤ ΩF∞(w).

Proof. From Equation (4), we know that F− can be written as the value of a minimal weighted
fractional set-cover. But if 1B ≤

∑
A⊂V δ

A1A, we have∑
A⊂V

δAg(1A) ≥ g
(∑

A⊂V δ
A
)
≥ g(1B),

where the first inequality results from the convexity and homogeneity of g, and the second from
the assumption that it is coordinate-wise non-decreasing. As a consequence, injecting the above
inequality in (4), we have F−(B) ≥ F (B). But since, we always have F− ≤ F , this proves the
equality.

For the second statement, using the coordinate-wise monotonicity of g and its homogeneity, we have
g(|w|) ≤ ‖w‖∞g(1Supp(w)) = ‖w‖∞F (Supp(w)). Then, taking the convex envelope of functions on

both sides of the inequality we get g(| · |)∗∗ ≤
(
‖ · ‖∞F (Supp(·))

)∗∗
= ΩF∞, where (·)∗ denotes the

Fenchel-Legendre transform.

4 Examples

subsectionOverlap count functions, their relaxations and the `1/`p-norms. A natural family of
set functions to consider are the functions that, given a collection of sets G ⊂ 2V are defined as the
number of these sets that are intersected by the support:

F∩(A) =
∑
B∈G

dB1{A∩G 6=∅}. (5)
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Since A 7→ 1{A∩G 6=∅} is clearly submodular and since submodular functions form a positive cone,
all these functions are submodular, which implies that ΩF∩p is a tight relaxation of F∩.

Overlap count functions vs set-covers. As mentioned in Section 2.1, if G is a partition, the
norm ΩF∩p is the `1/`p-norm; in this special case, F∩ is actually the value of the minimal (integer-
valued) weighted set-cover associated with the sets in G and the weights dG.

However, it should be noted that, in general, the value of these functions is quite different from the
value of a minimal weighted set-cover. It has rather the flavor of some sort of “maximal weighted
set-cover” in the sense that any set that has a non-empty intersection in the support would be
included in the cover. We call them overlap count functions.

`p relaxations of F∩ vs `1/`p-norms. In the case where p =∞, Bach (2010) showed that even
when groups overlap we have Ω∞(w) =

∑
B∈G dB‖wG‖∞, since the Lovász extension of a sum of

submodular functions is just the sum of the Lovász extensions of the terms in the sum.

The situation is more subtle when p < ∞: in that case, and perhaps surprisingly, ΩF∩p is not the
weighted `1/`p norm with overlap (Jenatton et al., 2011a), also referred to as the overlapping group
Lasso (which should clearly be distinguished from the latent group Lasso) and which is the norm
defined by w 7→

∑
B∈G d

′
B‖wG‖p. The norm ΩF∩p does not have a simple closed form in general.

In terms of sparsity patterns induced however, ΩF∩p behaves like ΩF∩∞ , and as a result the sparsity

patterns allowed by ΩF∩p are the same as those allowed by the corresponding weighted `1/`p norm
with overlap.

`p-relaxation of F∩ vs latent group Lasso based on G. It should be clear as well that ΩF∩p
is not itself the latent group Lasso associated with the collection G and the weights dG in the sense
of Jacob et al. (2009). Indeed, the latter corresponds to the function F∪ : A 7→ 1{A 6=∅} + ι{A∈G},
or to its LCE which is the minimal value of the fractional weighted set cover associated with G.
Clearly, F∪ is in general strictly smaller than F∩ and since the relaxation of the latter is tight,
it cannot be equal to the relaxation of the former, if the combinatorial functions are themselves
different. Obviously, the function ΩF∩p is still as shown in this paper, another latent group Lasso
corresponding to a fractional weighted set cover and involving a larger number of sets that the ones
in G (possibly all of 2V ). This last statement leads us to what might appear to be a paradox, which
we discuss next.

Supports stable by intersection vs formed as unions. Jenatton et al. (2011a) have shown
that the family of norms they considered induces possible supports which form a family that is
stable by intersection, in the sense that the intersection of any two possible support is also a possible
support. But since as mentioned above they have the same support as the norms ΩF∩p , for 1 < p ≤ ∞,
which are latent group Lasso norms, and since Jacob et al. (2009) have discussed the fact that the
supports induced by any norm Ωp are formed by unions of elements of the core set D, is might
appear paradoxical that the allowed support can be described at the same time as intersections and
as unions. There is in fact not contradiction because in general the set of supports that are induced
by the latent group Lasso are in fact not stable by union in the sense that some unions are actually
“unstable” and will thus not be selected.

Three different norms. To conclude, we must, given a set of groups G and a collection of weights
(dG)G∈G , distinguish three norms that can be defined from it, the weighted `1/`p-norm with overlap,
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the norm ΩF∩p obtained as the `p relaxation of the submodular penalty F∩, and finally, the norm

Ω
F[]
∪

p obtained as the relaxation of the set-cover or block-coding penalty with the weights dG.

Some of the advantages of using a tight relaxation still need to be assessed empirically and theoreti-
cally, but the possibility of using `p-relaxation for p <∞ removes the artifacts that were specific to
the `∞ case.

4.1 Chains, trees and directed acyclic graphs.

Instances of the three types of norms above are naturally relevant to induce sparsity pattern on
structures such as chains, trees and directed acyclic graphs.

The weighted `1/`p-norm with overlap has been proposed to induce interval patterns on chains and
rectangular or convex patterns on grids (Jenatton et al., 2011a), for certain sparsity patterns on
trees (Jenatton et al., 2011b) and on directed acyclic graphs (Mairal et al., 2011).

One of the norm considered in Jenatton et al. (2011a) provides a nice example of an overlap count
function, which it is worth presenting.

Example 3 (Modified range function). A shown in Example 1 in Section 2.2, the natural range
function on a sequence leads to a trivial LCE. Consider now the penalty with the form of Eq. (5)
with G the set of groups defined as

G =
{

[[1, k]] | 1 ≤ k ≤ p
}
∪
{

[[k, p]] | 1 ≤ k ≤ p
}
.

A simple calculation shows that F∩(∅) = 0 and that for A 6= ∅, F∩(A) = d − 1 + range(A). This
function is submodular as a sum of submodular functions, and thus equal to it lower combinatorial
envelope, which implies that the relaxation retains the structural a prior encoded by the combinatorial
function itself. We will consider the `2 relaxation of this submodular function in the experiments
(see Section 7) and compare it with the `1/`2-norm with overlap of Jenatton et al. (2011a).

In the case of trees and DAGs, a natural counting function to consider is the number of nodes which
have at least one descendant in the support, i.e. functions of the form F∩ : A 7→

∑
i∈V 1{A∩Di 6=∅},

where Di is the set containing node i and all its descendants. It is related to the weighted
`1/`p−norms which were considered in Jenatton et al. (2011b) (p ∈ {2,∞}) for and Mairal and
Yu (2012) (p =∞). As discussed before, while these norms include ΩF∩∞ if p =∞, they otherwise do
not correspond to the tightest relaxation, which it would be interesting to consider in future work.

Beyond the standard group Lasso and the exclusive group Lasso, there are very few instances of the
norm ΩF2 appearing in the literature. One such example is the wedge penalty considered in Micchelli
et al. (2011).

Latent group Lasso formulations are also of interest in these cases, and have not been yet been
investigated much, with the exception of Mairal and Yu (2012), which considered the case of a
parameter vector with coefficients indexed by a DAG and G the set of all paths in the graph.

There are clearly other combinatorial functions of interest than submodular functions and set-cover
functions. We present an example of such functions in the next section.

4.2 Exclusive Lasso

The exclusive Lasso is a formulation proposed by Zhou et al. (2010) which considers the case where
a partition G = {G1, . . . , Gk} of V is given and the sparsity imposed is that w should have at most
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one non-zero coefficient in each group Gj . The regularizer proposed by Zhou et al. (2010) is the
`p/`1-norm defined5 by ‖w‖`p/`1 = (

∑
G∈G ‖wG‖

p
1)1/p. Is this the tightest relaxation?

A natural combinatorial function corresponding to the desired constraint is the function F (A) defined
by F (∅) = 0, F (A) = 1 if maxG∈G |A ∩G| = 1 and F (A) =∞ otherwise.

To characterize the corresponding Ωp we can compute explicitly its dual norm Ω∗p:

(
Ω∗p(w)

)q
= max

A⊂V,A6=∅

‖sA‖qq
F (A)

= max
A⊂V

‖sA‖qq s.t. |A ∩G| ≤ 1, G ∈ G

= max
ij∈Gj , 1≤j≤k

k∑
j=1

|sij |q =

k∑
j=1

max
i∈Gj

|sij |q =

k∑
j=1

‖sGj‖q∞,

which shows that Ω∗p is the `q/`∞-norm or equivalently that Ωp is the `p/`1-norm and provides a
theoretical justification for the choice of this norm: it is indeed the tightest relaxation! It is inter-
esting to compute the lower combinatorial extension of F which is F−(A) = ΩF∞(1A) = ‖1A‖`∞/`1 =
maxG∈G |A ∩G|. This last function is also a natural combinatorial function to consider; by the pre-
vious result F− has the same convex relaxation as F, but it would be however less obvious to show

directly that Ω
F−
p is the `p/`1 (see appendix B for a direct proof which uses Lemma 7).

5 A variational form of the norm

Several results on Ωp rely on the fact that it can be related variationally to Ω∞.

Lemma 8. Ωp admits the two following variational formulations:

Ωp(w) = max
κ∈Rd

+

∑
i∈V

κ
1/q
i |wi| s.t. ∀A ⊂ V, κ(A) ≤ F (A)

= min
η∈Rd

+

∑
i∈V

1

p

|wi|p

ηp−1
i

+
1

q
Ω∞(η).

Proof. Using Fenchel duality, we have:

Ωp(w) = max
s∈Rd

s>w s.t. Ω∗p(w) ≤ 1

= max
s∈Rd

s>w s.t. ∀A ⊂ V, ‖sA‖qq ≤ F (A) by definition of Ω∗p,

= max
κ∈Rd

+

∑
i∈V

κ
1/q
i |wi| s.t. ∀A ⊂ V, κ(A) ≤ F (A).

5The Exclusive Lasso norm which is `p/`1 should not be confused with the group Lasso norm which is `1/`p.
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But it is easy to verify that κ
1/q
i |wi| = min

ηi∈R+

1

p

|wi|p

ηp−1
i

+
1

q
ηiκi with the minimum attained for ηi = |wi|

κ
1/p
i

.

We therefore get:

Ωp(w) = max
κ∈Rd

+

min
η∈Rd

+

∑
i∈V

1

p

|wi|p

ηp−1
i

+
1

q
η>κ s.t. ∀A ⊂ V, κ(A) ≤ F (A)

= min
η∈Rd

+

max
κ∈Rd

+

∑
i∈V

1

p

|wi|p

ηp−1
i

+
1

q
η>κ s.t. ∀A ⊂ V, κ(A) ≤ F (A)

= min
η∈Rd

+

∑
i∈V

1

p

|wi|p

ηp−1
i

+
1

q
Ω∞(η),

where we could exchange minimization and maximization since the function is convex-concave in
η and κ, and where we eliminated formally κ by introducing the value of the dual norm Ω∞(η) =
maxκ∈PF

κ>η.

Since Ω∞ is convex, the last formulation is actually jointly convex in (w, η) since (x, z) 7→ 1
p

‖x‖pp
zp−1 + 1

q z

is convex, as the perspective function of t 7→ tp (see Boyd and Vandenberghe, 2004, p. 89).

It should be noted that the norms Ωp therefore belong to the broad family of H-norms as defined6

in Bach et al. (2012, Sec. 1.4.2.) and studied by Micchelli et al. (2011).

The above result is particularly interesting if F is submodular since Ω∞ is then equal to the Lovász
extension of F on the positive orthant (Bach, 2010). In this case in particular, it is possible, as we
will see in the next section to propose efficient algorithms to compute Ωp and Ω∗p, the associated
proximal operators, and algorithms to solve learning problems regularized with Ωp thanks to the
above variational form.

For submodular functions, these variational forms are also the basis for the local decomposability
result of Section 6.4 which is key to establish support recovery in Section 6.5.

6 The case of submodular penalties

In this section, we focus on the case where the combinatorial function F is submodular.

Specifically, we will consider a function F defined on the power set 2V of V = {1, . . . , d}, which is
nondecreasing and submodular, meaning that it satisfies respectively

∀A,B ⊂ V, A ⊂ B ⇒ F (A) 6 F (B),

Moreover, we assume that F (∅) = 0. These set-functions are often referred to as polymatroid set-
functions (Fujishige, 2005; Edmonds, 2003). Also, without loss of generality, we assume that F
is strictly positive on singletons, i.e., for all k ∈ V , F ({k}) > 0. Indeed, if F ({k}) = 0, then by
submodularity and monotonicity, if A 3 k, F (A) = F (A\{k}) and thus we can simply consider
V \{k} instead of V .

Classical examples are the cardinality function and, given a partition of V into G1 ∪ · · · ∪Gk = V ,
the set-function A 7→ F (A) which is equal to the number of groups G1, . . . , Gk with non empty
intersection with A, which, as mentioned in section 2.1 leads to the grouped `1/`p-norm.

6Note that H-norms are in these references defined for p = 2 and that the variational formulation proposed here
generalizes this to other values of p ∈ (1,∞)
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With a slightly different perspective than the approach of this paper, Bach (2010) studied the special
case of the norm ΩFp when p = ∞ and F is submodular. As mentioned previously, he showed that

in that case the norm ΩF∞ is the Lovász extension of the submodular function F , which is a well
studied mathematical object.

Before presenting results on `p relaxations of submodular penalties, we review a certain number of
relevant properties and concepts from submodular analysis. For more details, see, e.g., Fujishige
(2005), and, for a review with proofs derived from classical convex analysis, see, e.g., Bach (2011).

6.1 Review of submodular function theory

Lovász extension. Given any set-function F , one can define its Lovász extension f : Rd+ → R, as
follows: given w ∈ Rd+, we can order the components of w in decreasing order wj1 > · · · > wjp > 0,
the value f(w) is then defined as

f(w) =

p−1∑
k=1

(xjk − xjk+1
)F ({j1, . . . , jk}) + xjpF ({j1, . . . , jp}) (6)

=

p∑
k=1

wjk [F ({j1, . . . , jk})− F ({j1, . . . , jk−1})]. (7)

The Lovász extension f is always piecewise-linear, and when F is submodular, it is also convex (see,
e.g., Fujishige (2005); Bach (2011)). Moreover, for all δ ∈ {0, 1}d, f(δ) = F (Supp(δ)) and f is in
that sense an extension of F from vectors in {0, 1}d (which can be identified with indicator vectors
of sets) to all vectors in Rd+. Moreover, it turns out that minimizing F over subsets, i.e., minimizing
f over {0, 1}d is equivalent to minimizing f over [0, 1]d (Edmonds, 2003).

Submodular polyhedron and norm We denote by P the submodular polyhedron (Fujishige,
2005), defined as the set of s ∈ Rd+ such that for all A ⊂ V , s(A) 6 F (A), i.e., P = {s ∈ Rd+, ∀A ⊂
V, s(A) 6 F (A)}, where we use the notation s(A) =

∑
k∈A sk. With our previous definitions, the

submodular polyhedron is just the canonical polyhedron associated with a submodular function.
One important result in submodular analysis is that, if F is a nondecreasing submodular function,
then we have a representation of f as a maximum of linear functions (Fujishige, 2005; Bach, 2011),
i.e., for all w ∈ Rd+,

f(w) = max
s∈P

w>s. (8)

We recognize here that the Lovász extension of a submodular function F is directly related to the
norm ΩF∞ in that f(|w|) = ΩF∞(w) for all w ∈ Rd.

Greedy algorithm Instead of solving a linear program with d + 2d constraints, a solution s to
(8) may be obtained by the following algorithm (a.k.a. “greedy algorithm”): order the components
of w in decreasing order wj1 > · · · > wjd , and then take for all k ∈ V , sjk = F ({j1, . . . , jk}) −
F ({j1, . . . , jk−1}). Moreover, if w ∈ Rd has some negative components, then, to obtain a solution to
maxs∈P w>s, we can take sjk to be simply equal to zero for all k such that wjk is negative (Edmonds,
2003).

Contraction and restriction of a submodular function. Given a submodular function F
and a set J , two related functions, which are submodular as well, will play a crucial role both
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algorithmically and for the theoretical analysis of the norm. Those are the restriction of F to a set
J , denoted FJ , and the contraction of F on J , denoted F J . They are defined respectively as

FJ : A 7→ F (A ∩ J) and F J : A 7→ F (A ∪ J)− F (A).

Both FJ and F J are submodular if F is.

In particular the norms ΩFJ
p : RJ → R+ and ΩF

J

p : RJc → R+ associated respectively with FJ and

F J will be useful to “decompose” ΩFp in the sequel. We will denote these two norms by ΩJ and ΩJ

for short. Note that their domains are not Rd but the vectors with support in J and Jc respectively.

Stable sets. Another concept which will be key in this section is that of stable set. A set A is said
stable if it cannot be augmented without increasing F , i.e., if for all sets B ⊃ A, B 6= A⇒ F (B) >
F (A). If F is strictly increasing (such as for the cardinality), then all sets are stable. The set of
stable sets is closed by intersection. In the case p = ∞, Bach (2011) has shown that these stable
sets were the only allowed sparsity patterns.

Separable sets. A set A is separable if we can find a partition of A into A = B1∪· · ·∪Bk such that
F (A) = F (B1) + · · · + F (Bk). A set A is inseparable if it is not separable. As shown in Edmonds
(2003), the submodular polytope P has full dimension d as soon as F is strictly positive on all
singletons, and its faces are exactly the sets {s(A) = F (A)} for stable and inseparable sets A. With
the terminology that we introduced in Section 2.3, this means that the core set of F is the set DF
of its stable and inseparable sets. In other words, we have P = {s ∈ Rd, ∀A ∈ DF , s(A) 6 F (A)}.
The core set will clearly play a role when deriving concentration inequalities in Section 6.5. For the
cardinality function, stable and inseparable sets are singletons.

6.2 Submodular function and lower combinatorial envelope

A few comments are in order to confront submodularity to the previously introduced notions as-
sociated with cover-sets, and lower and upper combinatorial envelopes. We have showed that
F−(A) = Ω∞(1A). But for a submodular function Ω∞(1A) = f(1A) = F (A) since f is the Lovász
extension of F . This shows that a submodular function is its own lower combinatorial envelope.
However the converse is not true: a lower combinatorial envelope is not submodular in general.
Indeed, in example 2, we have F−({1, 2}) + F−({2, 3}) � F−({2}) + F−({1, 2, 3}).

The core set of a submodular function is the set DF of its stable and inseparable sets, which implies
that F can be retrieved as the value of the minimal fractional weighted set cover the sets A ∈ DF
with weights F (A).

6.3 Optimization algorithms for the submodular case

In the context of sparsity and structured sparsity, proximal methods have emerged as methods of
choice to design efficient algorithm to minimize objectives of the form f(w) + λΩ(w), where f is a
smooth function with Lipschitz gradients and Ω is a proper convex function (Bach et al., 2012). In
a nutshell, their principle is to linearize f at each iteration and to solve the problem

min
w∈Rd

∇f(wt)
>(w − wt) +

L

2
‖w − wt‖2 + λΩ(w),
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for some constant L. This problem is a special case of the so-called proximal problem:

min
w∈Rd

1

2
‖w − z‖22 + λΩp(w). (9)

The function mapping z to the solution of the above problem is called proximal operator. If this
proximal operator can be computed efficiently, then proximal algorithm provide good rates of con-
vergence especially for strongly convex objectives. We show in this section that the structure of
submodular functions can be leveraged to compute efficiently Ωp, Ω∗p and the proximal operator.

6.3.1 Computation of Ωp and Ω∗p.

A simple approach to compute the norm is to maximize in κ in the variational formulation (6). This
can be done efficiently using for example a conditional gradient algorithm, given that maximizing
a linear form over the submodular polyhedron is done easily with the greedy algorithm (see Section
6.1).

We will propose another algorithm to compute the norm based on the so-called decomposition al-
gorithm, which is a classical algorithm of the submodular analysis literature that makes it possible
to minimize a separable convex function over the submodular polytope efficiently (see, e.g., Bach,
2011, Section 8.6).

Since the dual norm is defined as Ω∗p(s) = maxA⊂V,A 6=∅
‖sA‖q
F (A)1/q

, to compute it from s, we need to

maximize efficiently over A, which can be done, for submodular functions, through a sequence of
submodular function minimizations (see, e.g., Bach, 2011, Section 8.4).

6.3.2 Computation of the proximal operator

Using Eq. (6), we can reformulate problem (9) as

min
w∈Rd

1

2
‖w − z‖22 + λΩp(w) = min

w∈Rd
max

κ∈Rd
+∩P

1

2
‖w − z‖22 + λ

∑
i∈V

κ
1/q
i |wi|

= max
κ∈Rd

+∩P

∑
i∈V

min
wi∈R

{
1

2
(wi − zi)2 + λκ

1/q
i |wi|

}
= max

κ∈Rd
+∩P

∑
i∈V

ψi(κi),

with ψi : κi 7→ minwi∈R

{
1
2 (wi − zi)2 + λκ

1/q
i |wi|

}
.

Thus, solving the proximal problem is equivalent to maximizing a concave separable function∑
i ψi(κi) over the submodular polytope. For a submodular function, this can be solved with a

“divide and conquer” strategy which takes the form of the so-called decomposition algorithm in-
volving a sequence of submodular function minimizations (see Groenevelt, 1991; Bach, 2011). This
yields an algorithm which finds a decomposition of the norm and applies recursively the proximal
algorithm to the two parts of the decomposition corresponding respectively to a restriction and a
contraction of the submodular function. We explicit this algorithm as Algorithm 1 for the case
p = 2.

Applying this decomposition algorithm in the special case where λ = 0 yields a decomposition
algorithm, namely Algorithm E.2, to compute the norm itself (see appendix E.2).
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Algorithm 1 Computation x = ProxλΩF
2

(z)

Require: z ∈ Rd, λ > 0
1: Let A = {j | zj 6= 0}
2: if A 6= V then
3: Set xA = Prox

λΩ
FA
2

(zA)

4: Set xAc = 0
5: return x by concatenating xA and xAc

6: end if
7: Let t ∈ Rd with ti =

z2i
‖z‖2F (V )

8: Find A minimizing the submodular function F − t
9: if A = V then

10: return x =
(
‖z‖2 − λ

√
F (V )

)
+

z
‖z‖2

11: end if
12: Let xA = Prox

λΩ
FA
2

(zA)

13: Let xAc = Prox
λΩFA

2
(zAc)

14: return x by concatenating xA and xAc

6.4 Weak and local decomposability of the norm for submodular func-
tions.

The work of Negahban et al. (2010) has shown that when a norm is decomposable with respect to a
pair of subspaces A and B, meaning that for all α ∈ A and β ∈ B⊥ we have Ω(α+β) = Ω(α)+Ω(β),
a common proof scheme allows to show support recovery results and fast rates of convergence in
prediction error. For the norms we are considering, this type of assumption would be too strong.
Instead, we follow the analysis of Bach (2010) which considered the case p = ∞ and which only
requires some weaker form of decomposability. The decompositions involve ΩJ and ΩJ which are
respectively the norms associated with the restriction and the contraction of the submodular function
F to or on the set J .

Concretely, let c = m̃
M with M = maxk∈V F ({k}) and

m̃ = min
A,k

F (A ∪ {k})− F (A) s.t. F (A ∪ {k}) > F (A).

Then we have:

Proposition 4. (Weak and local decomposability)

Weak decomposability. For any set J and any w ∈ Rd, we have

Ω(w) ≥ ΩJ(wJ) + ΩJ(wJc).

Local decomposability. Let K = Supp(w) and J the smallest stable set containing K, if ‖wJc‖p ≤
c1/p mini∈K |wi|, then

Ω(w) = ΩJ(wJ) + ΩJ(wJc).

Note that when p =∞, if J = K, the condition becomes mini∈J |wi| > maxi∈Jc |wi|, and we recover
exactly the corresponding result from Bach (2010).

This proposition shows that a sort of reverse triangular inequality involving the norms Ω,ΩJ and
ΩJ always holds and that if there is a sufficiently large positive gap between the values of w on J
and on its complement then Ω can be written as a separable function on J and Jc.
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6.5 Theoretical analysis for submodular functions

In this section, we consider a fixed design matrix X ∈ Rn×p and y ∈ Rn a vector of random responses.
Given λ > 0, we define ŵ as a minimizer of the regularized least-squares cost:

minw∈Rd
1

2n‖y −Xw‖
2
2 + λΩ(w). (10)

We study the sparsity-inducing properties of solutions of (10), i.e., we determine which patterns are
allowed and which sufficient conditions lead to correct estimation.

We assume that the linear model is well-specified and extend results from Zhao and Yu (2006) for
sufficient support recovery conditions and from Negahban et al. (2010) for estimation consistency,
which were already derived by Bach (2010) for p = ∞. The following propositions allow us to
retrieve and extend well-known results for the `1-norm.

Denote by ρ the following constant:

ρ = min
A⊂B,F (B)>F (A)

F (B)− F (A)

F (B\A)
∈ (0, 1].

The following proposition extends results based on support recovery conditions (Zhao and Yu, 2006):

Proposition 5 (Support recovery). Assume that y = Xw∗ + σε, where ε is a standard multi-
variate normal vector. Let Q = 1

nX
>X ∈ Rd×d. Denote by J the smallest stable set containing the

support Supp(w∗) of w∗. Define ν = minj,w∗j 6=0 |w∗j | > 0 and assume κ = λmin(QJJ) > 0.

If the following generalized Irrepresentability Condition holds:

∃η > 0, (ΩJ)∗
((

ΩJ(Q−1
JJQJj)

)
j∈Jc

)
6 1− η,

then, if λ 6 κν
2|J|1/pF (J)1−1/p , the minimizer ŵ is unique and has support equal to J , with probability

larger than 1− 3P
(
Ω∗(z) > ληρ

√
n

2σ

)
, where z is a multivariate normal with covariance matrix Q.

In terms of prediction error the next proposition extends results based on restricted eigenvalue
conditions (see, e.g. Negahban et al., 2010).

Proposition 6 (Consistency). Assume that y = Xw∗ + σε, where ε is a standard multivariate
normal vector. Let Q = 1

nX
>X ∈ Rd×d. Denote by J the smallest stable set containing the support

Supp(w∗) of w∗.

If the following ΩJ-Restricted Eigenvalue condition holds:

∀∆ ∈ Rd,
(

ΩJ(∆Jc) 6 3ΩJ(∆J)
)
⇒

(
∆>Q∆ > κΩJ(∆J)2

)
,

then we have

Ω(ŵ − w∗) 6 242λ

κρ2
and

1

n
‖Xŵ −Xw∗‖22 6

36λ2

κρ2
,

with probability larger than 1− P
(
Ω∗(z) > λρ

√
n

2σ

)
where z is a multivariate normal with covariance

matrix Q.

The concentration of the values of Ω∗(z) for z is a multivariate normal with covariance matrix Q
can be controlled via the following result.

Proposition 7. Let z be a normal variable with covariance matrix Q that has unit diagonal. Let
DF be the set of stable inseparable sets. Then

P
(

Ω∗(z) > 4
√
q log(2|DF |) max

A∈DF

|A|1/q

F (A)1/q
+ u max

A∈DF

|A|(1/q−1/2)+

F (A)1/q

)
6 e−u

2/2. (11)
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Figure 4: Set G of overlapping groups defining the norm proposed by Jenatton et al. (2011a) (set in
blue or green and their complements) and an example of corresponding induced sparsity patterns (in red),
respectively for interval patterns in 1D (left) and for rectangular patterns in 2D (right).

7 Experiments

7.1 Setting

To illustrate the results presented in this paper we consider the problem of estimating the support
of a parameter vector w ∈ Rd, when its support is assumed either

(i) to form an interval in [[1, d ]] or

(ii) to form a rectangle [[kmin, kmax]]× [[k′min, k
′
max]] ⊂ [[1, d1]]× [[1, d2]], with d = d1d2.

These two settings were considered in Jenatton et al. (2011a). These authors showed that, for both
types of supports, it was possible to construct an `1/`2-norm with overlap based on a well-chosen
collection of overlapping groups, so that the obtained estimators almost surely have a support of
the correct form. Specifically, it was shown in Jenatton et al. (2011a) that norms of the form
w 7→

∑
B∈G ‖wB‖2 induce sparsity patterns that are exactly intervals of V = {1, . . . , p} if

G =
{

[1, k] | 1 ≤ k ≤ p
}
∪
{

[k, p] | 1 ≤ k ≤ p
}
,

and induce rectangular supports on V = V1 × V2 with V1 := {1, . . . , p1} and V2 := {1, . . . , p2} if

G =
{

[[1, k]]× V2 | 1 ≤ k ≤ p1

}
∪
{

[[k, p1]]× V2 | 1 ≤ k ≤ p1

}
∪
{
V1 × [[1, k]] | 1 ≤ k ≤ p2

}
∪
{
V1 × [[k, p2]]} | 1 ≤ k ≤ p2

}
.

These sets of groups are illustrated on Figure 4, and, for the first case, the set G has already discussed
in Example 3 to define a modified range function which is submodular.

Moreover, the authors showed that with a weighting scheme leading to a norm of the form w 7→∑
B∈G ‖wB ◦dB‖, where ◦ denotes the Hadamard product and dB ∈ Rd+ is a certain vector of weights

designed specifically for these case7 it is possible to obtain compelling empirical results in terms of
support recovery, especially in the 1D case.

Interval supports. From the point of view of our work, that is, approaching the problem in terms
of combinatorial functions, for supports constrained to be intervals, it is natural to consider the
range function as a possible form of penalty: F0(A) := range(A) = imax(A) − imin(A) + 1. Indeed
the range function assigns the same penalty to sets with the same range, regardless of whether these
sets are connected or have “holes”; this clearly favors intervals since they are exactly the sets with

7We refer the reader to the paper for the details.
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Figure 5: Examples of the shape of the signals used to define the amplitude of the coefficients of w on the
support. Each plot represents the value of wi as a function of i. The first (w constant on the support), third

(wi = g(c i) with g : x 7→ | sin(x) sin(5x)|) and last signal (wi
i.i.d.∼ N (0, 1)) are the ones used in reported

results.

the largest support for a given value of the penalty. Unfortunately, as discussed in the Example 1
of Section 2.2, the combinatorial lower envelope of the range function is A 7→ |A|, the cardinality
function, which implies that ΩF0

p is just the `1-norm: in this case, the structure implicitly encoded
in F0 is lost through the convex relaxation.

However, as mentioned by Bach (2010) and discussed in Example 3 the function Fr defined by
Fr(A) = d− 1 + range(A) for A 6= ∅ and F (∅) = 0 is submodular, which means that ΩFr

p is a tight
relaxation and that regularizing with it leads to tractable convex optimization problems.

Rectangular supports. For the case of rectangles on the grid, a good candidate is the function
F2 with F2(A) = Fr(Π1(A)) + Fr(Π2(A)) with Πi(A) the projection of the set A along the ith axis
of the grid.

This makes of ΩFr
p and ΩF2

p two good candidates to estimate a vector w whose support matches
respectively the two described a priori.

7.2 Methodology

We consider a simple regression setting in which w ∈ Rd is a vector such that Supp(w) is either an
interval on [1, d] or a rectangle on a fixed 2D grid. We draw the design matrix X ∈ Rn×d and a noise
vector ε ∈ Rn both with i.i.d. standard Gaussian entries and compute y = Xw + ε. We then solve
problem (10), with Ω chosen in turn to be the `1-norm (Lasso), the elastic net, the norms ΩFp for
p ∈ {2,∞} and F chosen to be Fr or F2 in 1D and 2D respectively; we consider also the overlapping
`1/`2-norm proposed by Jenatton et al. (2011a) and the weighted overlapping `1/`2-norm proposed
by the same authors, i.e., Ω(w) =

∑
B∈G ‖wB ◦ dB‖2 with the same notations as before8.

We assess the estimators obtained through the different regularizers both in terms of support recovery
and in terms of mean-squared error in the following way: assuming that held out data permits to
choose an optimal point on the regularization path obtained with each norm, we determine along
each such path, the solution which either has a support with minimal Hamming distance to the true
support or the solution which as the best `2 distance, and we report the corresponding distances as
a function the sample size on Figures 6 and 7 respectively for the 1D and the 2D case.

8Note that we do not need to compare with an `infty counterpart of the unweighted norm considered in Jenatton
et al. (2011a) since for p = ∞ the unweighted `1/`∞ norm defined with the same collection G is exactly the norm

ΩFr∞ : this follows from the form of Fr as defined in Example 3 and the preceding discussion.
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Finally, we assess the incidence of the fluctuation in amplitude of the coefficients in the vector w
generating the data: we consider different cases among which:

(i) the case where w has a constant value on the support,

(ii) the case where wi varies as a modulated cosine, with wi = g(ci) for c a constant scaling and
g : x 7→ | cos(x) cos(5x)|

(iii) the case where wi is drawn i.i.d. from a standard normal distribution.

These cases (and two others for which we do not report results) are illustrated on Figure 5.

7.3 Results

Results reported for the Hamming distances in the left columns of Figures 6 and 7 show that
the norms ΩFr

2 and ΩF2
2 perform quite well for support recovery overall and tend to outperform

significantly their `∞ counterpart in most cases. In 1D, several norms achieve reasonably small
Hamming distance, including the `1-norm, the norm ΩFr

2 and the weighted overlapping `1/`2-norm
although the latter clearly dominates for small values of n.

In 2D, ΩF2
2 leads clearly to smaller Hamming distances than other norms for the larger values of n,

while is outperformed by the `1-norm for small sample sizes. It should be noted that neither ΩF2
∞

nor the weighted overlapping `1/`2-norm that performed so well in 1D achieve good results.

The performance of the `2 relaxation tends to be comparatively better when the vector of parameter
w has entries that vary a lot, especially when compared to the `∞ relaxation. Indeed, the choice
of the value of p for the relaxation can be interpreted as encoding a prior on the joint distribution
of the amplitudes of the wi: as discussed before, and as illustrated in Bach (2010) the unit balls
for the `∞ relaxations display additional “edges and corners” that lead to estimates with clustered
values of |wi|, corresponding to an priori that many entries in w have identical amplitudes. More
generally, large values of p correspond to the prior that the amplitude varies little while their vary
more significantly for small p.

The effect of this other type of a priori encoded in the regularization is visible when considering
the performance in terms of `2 error. Overall, both in 1D and 2D all methods perform similarly in
`2 error, except that when w is constant on the support, the `∞ relaxations ΩFr

∞ and ΩF2
∞ perform

significantly better, and this is the case most likely because the additional “corners” of these norms
induce some pooling of the estimates of the value of the wi, which improves their estimation. By
contrast it can be noted that when w is far from constant the `∞ relaxations tend to have slightly
larger least-square errors, while, on contrary, the `1-regularisation tends to be among the better
performing methods.

8 Conclusion

We proposed a family of convex norms defined as relaxations of penalizations that combine a combi-
natorial set-function with an `p-norm. Our formulation allows to recover in a principled way classical
sparsity inducing regularizations such as `1, `1/`p-norms or `p/`1-norms. In addition, it establishes
the the latent group Lasso is the tightest relaxation of block-coding penalties.

There are several directions for future research. First, it would be of interest to determine for which
combinatorial functions beyond submodular ones, efficient algorithms and consistency results can

23



0 500 1000 1500 2000
0

20

40

60

80

100

d=256, k=160, σ=0.5

n

B
e
s
t 

H
a
m

m
in

g

 

 

EN

GL+w

GL

L1

Sub p=∞

Sub p=2

0 500 1000 1500 2000
10

−3

10
−2

10
−1

10
0

10
1

10
2

d=256, k=160, σ=0.5

n

B
e
s
t 

L
2

 

 

EN

GL+w

GL

L1

L2

Sub p=∞

Sub p=2

0 500 1000 1500 2000
0

20

40

60

80

100

d=256, k=160, σ=0.5

n

B
e
s
t 

H
a
m

m
in

g

 

 

EN

GL+w

GL

L1

Sub p=∞

Sub p=2

0 500 1000 1500 2000
10

−2

10
−1

10
0

10
1

10
2

d=256, k=160, σ=0.5

n

B
e
s
t 

L
2

 

 

EN

GL+w

GL

L1

L2

Sub p=∞

Sub p=2

Figure 6: Best Hamming distance (left column) and best least square error (right column) to the true
parameter vector w∗, among all vectors along the regularization path of a least square regression
regularized with a given norm, for different patterns of values of w∗. The different regularizers
compared include the Lasso (L1), Ridge (L2), the elastic net (EN), the unweighted (GL) and weighted
(GL+w) `1/`2 regularizations proposed by Jenatton et al. (2011a), the norms ΩF2 (Sub p = 2) and
ΩF∞ (Sub p = ∞) for a specified function F . (first row) Constant signal supported on an interval,
with an a priori encoded by the combinatorial function F : A 7→ d − 1 + range(A). (second row)
Same setting with a signal w∗ supported by an interval consisting of coefficients w∗i drawn from a
standard Gaussian distribution. In each case, the dimension is d = 256, the size of the true support
is k = 160 , the noise level is σ = 0.5 and signal amplitude ‖w‖∞ = 1.
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Figure 7: Best Hamming distance (left column) and best least square error (right column) to the true
parameter vector w∗, among all vectors along the regularization path of a least square regression regularized
with a given norm, for different patterns of values of w∗. The regularizations compared include the Lasso
(L1), Ridge (L2), the elastic net (EN), the unweighted (GL) and weighted (GL+w) `1/`2 regularizations
proposed by Jenatton et al. (2011a), the norms ΩF

2 (Sub p = 2) and ΩF
∞ (Sub p =∞) for a specified function

F . Parameter vectors w∗ considered here have coefficients that are supported by a rectangle on a grid with
size d1 × d2 with d = d1d2. (first row) Constant signal supported on a rectangle with an a priori encoded
by the combinatorial function F : A 7→ d1 + d2 − 4 + range(Π1(A)) + range(Π2(A)). (second row) Same
setting with coefficients of w on the support given as w∗i1i2 = g(c i1)g(c i2) for c a positive constant and
g : x 7→ | cos(x) cos(5x)|. (third row) Same setting with coefficients w∗i1i2 drawn from a standard Gaussian
distribution. In each case, the dimension is d = 256, the size of the true support is k = 160 , the noise level
is σ = 1 and signal amplitude ‖w‖∞ = 1.
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be established. Then a sharper analysis of the relative performance of the estimators using different
levels of a priori would be needed to answer question such as: When is using a structured a priori
likely to yield better estimators? When could it degrade the performance? What is the relation to
the performance of an oracle given a specified structured a priori?
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A Form of primal norm

We provide here a proof of lemma 6 which we first recall:

Lemma (6). Ωp and Ω∗p are dual to each other.

Proof. Let ωAp be the function9 defined by ωAp (w) = F (A)1/q ‖wA‖p ι{v|Supp(v)⊂A}(w) with ιB the

indicator function taking the value 0 on B and ∞ on Bc. Let KA
p be the set KA

p = {s | ‖sA‖qq ≤
F (A)}. By construction, ωAp is the support function of KA

p (see Rockafellar, 1970, sec.13), i.e.

ωAp (w) = maxs∈KA
p
w>s. By construction we have {s | Ω∗p(s) ≤ 1} = ∩A⊂VKA

p . But this implies

that ι{s|Ω∗p(s)≤1} =
∑
A⊂V ιKA

p
. Finally, by definition of Fenchel-Legendre duality,

Ωp(w) = max
w∈Rd

w>s−
∑
A⊂V

ιKA
p

(s),

or in words Ωp is the Fenchel-Legendre dual to the sum of the indicator functions ιKA
p

. But since
the Fenchel-Legendre dual of a sum of functions is the infimal convolution of the duals of these

9Or gauge function to be more precise.
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functions (see Rockafellar, 1970, Thm. 16.4 and Corr. 16.4.1, pp. 145-146), and since by definition
of a support function

(
ιKA

p

)∗
= ωAp , then Ωp is the infimal convolution of the functions ωAp , i.e.

Ωp(w) = inf
(vA∈Rd)A⊂V

∑
A⊂V

ωAp (vA) s.t. w =
∑
A⊂V

vA,

which is equivalent to formulation (3). See Obozinski et al. (2011) for a more elementary proof of
this result.

B Example of the Exclusive Lasso

We showed in Section 4.2 that the `p exclusive Lasso norm, also called `p/`1-norm, defined by the

mapping w 7→
(∑

G∈G ‖wG‖
p
1

)1/p

, for some partition G, is a norm ΩFp providing the `p tightest

convex p.h. relaxation in the sense defined in this paper of a certain combinatorial function F . A
computation of the lower combinatorial envelope of that function F yields the function F− : A 7→
maxG∈G |A ∩G|.

This last function is also a natural combinatorial function to consider and by the properties of a
LCE it has the same convex relaxation. It should be noted that it is however less obvious to show
directly that Ω

F−
p is the `p/`1 norm...

We thus show a direct proof of that result since it illustrates how the results on LCE and UCE can
be used to analyze norms and derive such results.

Lemma 9. Let G = {G1, . . . , Gk} be a partition of V . For F : A 7→ maxG∈G |A ∩G|, we have
ΩF∞(w) = maxG∈G ‖wG‖1.

Proof. Consider the function f : w 7→ maxG∈G ‖wG‖1 and the set function F0 : A 7→ f(1A). We
have F0(A) = maxG∈G ‖1A∩G‖1 = F (A). But by Lemma 7, this implies that f(w) ≤ ΩF∞(w) since
f = f(| · |) is convex positively homogeneous and coordinatewise non-decreasing on Rd+. We could
remark first that since F (A) = f(1A) ≤ ΩF∞(1A) ≤ F (A), this shows that F = F− is a lower
combinatorial envelope. Now note that

(ΩF∞)∗(s) = max
A⊂V,A 6=∅

min
G∈G

‖sA‖1
|A ∩G|

≥ max
A⊂V, |A∩G|=1, G∈G

‖sA‖1 =
∑
G∈G

max
i∈G
|si| =

∑
G∈G
‖sG‖∞.

This shows that (ΩF∞)∗(s) ≥
∑
G∈G ‖sG‖∞, which implies for dual norms that ΩF∞(w) ≤ f(w).

Finally, since we showed above the opposite inequality ΩF∞ = f which shows the result.

C Properties of the norm ΩF
p when F is submodular

In this section, we first derive upper bounds and lower bounds for our norms, as well as a local
formulation as a sum of `p-norms on subsets of indices.
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C.1 Some important inequalities.

We now derive inequalities which will be useful later in the theoretical analysis. By definition, the
dual norm satisfies the following inequalities:

‖s‖∞
M

1
q

≤ max
k∈V

‖s{k}‖q
F ({k})

1
q

≤ Ω∗p(s) = max
A⊂V,A 6=∅

‖sA‖q
F (A)

1
q

≤ ‖s‖q
minA⊂V,A 6=∅ F (A)

1
q

≤ ‖s‖q
m

1
q

, (12)

form = mink∈V F ({k}) andM = maxk∈V F ({k}). These inequalities imply immediately inequalities
for Ωp (and therefore for f since for η ∈ Rd+, f(η) = Ω∞(η)):

m1/q‖w‖p 6 Ωp(w) 6M1/q‖w‖1.

We also have Ωp(w) 6 F (V )1/q‖w‖p, using the following lower bound for the dual norm: Ω∗p(s) >
‖s‖p

F (V )1/q
.

Since by submodularity, we in fact have M = maxA,k/∈A F (A ∪ {k}) − F (A), it makes sense to
introduce m̃ = minA,k,F (A∪{k})>F (A) F (A ∪ {k}) − F (A) ≤ m. Indeed, we consider in Section 6.5
the norm Ωp,J (resp. ΩJp ) associated with restrictions of F to J (resp. contractions of F on J) and
it follows from the previous inequalities that for all J ⊂ V , we have:

m̃1/q‖w‖p 6 m1/q‖w‖p 6 Ωp,J(w) 6M1/q‖w‖1 and m̃1/q‖w‖p 6 ΩJp (w) 6M1/q‖w‖1.

C.2 Some optimality conditions for η.

While exact necessary and sufficient conditions for η to be a solution of Eq. (6) would be tedious
to formulate precisely, we provide three necessary and two sufficient conditions, which together
characterize a non-trivial subset of the solutions, which will be useful in the subsequent analysis.

Proposition 8 (Optimality conditions for η). Let F be a non-increasing submodular function. Let
p > 1 and w ∈ Rd, K = Supp(w) and J the smallest stable set containing K. Let H(w) the set of
minimizers of Eq. (6). Then,

(a) the set {ηK , η ∈ H(w)} is a singleton with strictly positive components, which we denote
{ηK(w)}, i.e., Eq. (6) uniquely determines ηK .

(b) For all η ∈ H(w), then ηJc = 0.

(c) If A1 ∪ · · · ∪ Am are the ordered level sets of ηK , i.e., η is constant on each Aj and the values
on Aj form a strictly decreasing sequence, then F (A1 ∪ · · · ∪Aj)− F (A1 ∪ · · · ∪Aj−1) > 0 and the

value on Aj is equal to ηAj (w) =
‖wAj

‖p
[F (A1∪···∪Aj)−F (A1∪···∪Aj−1)]1/p

.

(d) If ηK is equal to ηK(w), maxk∈J\K ηk 6 mink∈K ηk(w), and ηJc = 0, then η ∈ H(w).

(e) There exists η ∈ H(w) such that mini∈K |wi|
M1/p 6 minj∈J ηj 6 maxj∈J ηj 6

‖w‖p
m1/p .

Proof. (a) Since f is non-decreasing with respect to each of its argument, for any η ∈ H(w), we have
η′ ∈ H(w) for η′ defined through η′K = ηK and ηKc = 0. The set of values of ηK for η ∈ H(w) is
therefore the set of solutions problem (6) restricted to K. The latter problem has a unique solution

as a consequence of the strict convexity on R∗+ of ηj 7→ |wj |p

ηp−1
j

.

(b) If there is j ∈ Jc such that η ∈ H(w) and ηj 6= 0, then (since wj = 0) because f is non-
decreasing with respect to each of its arguments, we may take ηj infinitesimally small and all other
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ηk for k ∈ Kc equal to zero, and we have f(η) = fK(ηK(w)) + ηj [F (K ∪ {j}) − F (K)]. Since
F (K ∪ {j}) − F (K) > F (J ∪ {j}) − F (J) > 0 (because J is stable), we have f(η) > fK(ηK(w)),
which is a contradiction.

(c) Given the ordered level sets, we have f(η) =
∑m
j=1 η

Aj [F (A1 ∪ · · · ∪ Aj)− F (A1 ∪ · · · ∪ Aj−1)],

which leads to a closed-form expression ηAj (w) =
‖wAj

‖p
[F (A1∪···∪Aj)−F (A1∪···∪Aj−1)]1/p

. If F (A1 ∪ · · · ∪
Aj)− F (A1 ∪ · · · ∪ Aj−1) = 0, since ‖wAj

‖p > 0, we have ηAj as large as possible, i.e., it has to be
equal to ηAj−1 , thus it is not a possible ordered partition.

(d) With our particular choice for η, we have
∑
i∈V

1
p
|wi|p

ηp−1
i

+ 1
q f(η) = ΩK(wK). Since we always

have Ω(w) > ΩK(wK), then η is optimal in Eq. (6).

(e) We take the largest elements from (d) and bounds the components of ηK using (c).

Note that from property (c), we can explicit the value of the norm as:

Ωp(w) =

k∑
j=1

(F (A1 ∪ . . . ∪Aj)− F (A1 ∪ . . . ∪Aj−1))
1
q ‖wAj\Aj−1

‖p (13)

= Ωp,A1(wA1) +

k∑
j=2

Ω
Aj−1

p,Aj
(wAj\Aj−1

) (14)

where ΩAp,B is the norm associated with the contraction on A of F restricted to B.

D Proof of Proposition 4 (Decomposability)

Concretely, let c = m̃
M with M = maxk∈V F ({k}) and

m̃ = min
A,k

F (A ∪ {k})− F (A) s.t. F (A ∪ {k}) > F (A)

Proposition (4. Weak and local Decomposability). (a) For any set J and any w ∈ Rd, we have

Ω(w) ≥ ΩJ(wJ) + ΩJ(wJc).

(b) Assume that J is stable, and ‖wJc‖p ≤ c1/p mini∈J |wi|, then Ω(w) = ΩJ(wJ) + ΩJ(wJc).
(c) Assume that K is non stable and J is the smallest stable set containing K, and that ‖wJc‖p ≤
c1/p mini∈K |wi|, then Ω(w) = ΩJ(wJ) + ΩJ(wJc).

Proof. We first prove the first statement (a): If ‖sA∩J‖pp ≤ F (A∩J) and ‖sA∩Jc‖pp ≤ F (A∪J)−F (J)
then by submodularity we have ‖sA‖pp ≤ F (A ∩ J) + F (A ∪ J) − F (J) ≤ F (A). The submodular

polyhedra associated with FJ and F J are respectively defined by

P (FJ) = {s ∈ Rd, Supp(s) ⊂ J, s(A) ≤ F (A), A ⊂ J} and

P (F J) = {s ∈ Rd, Supp(s) ⊂ Jc, s(A) ≤ F (A ∪ J)− F (J)}

Denoting s◦p := (sp1, . . . , s
p
d), we therefore have

Ω(w) = max
{|s◦p|∈P (F )}

s>w ≥ max
{|s◦pJ |∈P (FJ ), |s◦p

Jc |∈P (FJ )}
s>w = ΩJ(wJ) + ΩJ(wJc).
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In order to prove (b), we consider an optimal ηJ for wJ and ΩJ and an optimal ηJc for ΩJ . Because
of our inequalities, and because we have assume that J is stable (so that the value m for ΩJ is

indeed lower bounded by m̃), we have ‖ηJc‖∞ 6 ‖wJc‖p
m̃1/p . Moreover, we have minj∈J ηj >

mini∈J |wi|
M1/p

(inequality proved in the main paper). Thus when concatenating ηJ and ηJc we obtain an optimal η
for w (since then the Lovász extension decomposes as a sum of two terms), hence the desired result.

In order to prove (c), we simply notice that since F (J) = F (K), the value of ηJ\K is irrelevant (the
variational formulation does not depend on it), and we may take it equal to the largest known possible

value, i.e., one which is largest than mini∈J |wi|
M1/p , and the same reasoning than for (b) applies.

Note that when p = ∞, the condition in (b) becomes mini∈J |wi| > maxi∈Jc |wi|, and we recover
exactly the corresponding result from Bach (2010).

E Algorithmic results

E.1 Proof of Algorithm 1

Algorithm 1 is a particular instance of the decomposition algorithm for the optimization of a convex
function over the submodular polyhedron (see e.g. section 6.1 of Bach (2011)) Indeed denoting

ψi(κi) = minwi∈R
1
2 (wi − zi)2 + λκ

1/q
i |wi|, the computation of the proximal operator amounts to

solving in κ the problem

max
κ∈Rd

+∩P

∑
i∈V

ψi(κi)

Following the decomposition algorithm, one has to solve first

max
κ∈Rd

+

∑
i∈V

ψi(κi) s.t.
∑
i∈V

κi = F (V )

= min
w∈Rd

max
κ∈Rd

+

1

2
‖w − z‖22 +

∑
i∈V

κ
1/q
i |wi| s.t.

∑
i∈V

κi = F (V )

= min
w∈Rd

1

2
‖w − z‖22 + λF (V )1/q‖w‖p,

where the last equation is obtained by solving the maximization problem in κ, which has the unique

solution κi = F (V ) |wi|p
‖w‖pp if w 6= 0 and the simplex of solutions {κ ∈ Rd+ | κ(V ) = F (V )} for w = 0.

This is solved in closed form for p = 2 with w∗ = (‖z‖2 − λ
√
F (V ))+

z
‖z‖2 if z 6= 0 and w∗ = 0 else.

In particular since w∗ ∝ z, then κi = F (V )
z2i
‖z‖22

is always a solution. Following the decomposition

algorithm, one then has to find the minimizer of the submodular function A 7→ F (A)− κ(A). Then
one needs to solve

min
κA∈R|A|+ ∩P(FA)

∑
i∈A

ψi(κi) and min
κV \A∈R

|V \A|
+ ∩P(FA)

∑
i∈V \A

ψi(κi).

Using the expression of ψi and exchanging as above the minimization in w and the maximization in
κ, one obtains directly that these two problems correspond respectively to the computation of the

proximal operators of ΩFA on zA and of the proximal operator of ΩF
A

on zV \A.

The decomposition algorithm is proved to be correct in section 6.1 of Bach (2011) under the assump-
tion that κi 7→ ψ(κi) is a strictly convex function. The functions we consider here are not strongly
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convex, and in particular, as mentioned above the solution in κ is not unique in case w∗ = 0. The
proof of Bach (2011) however goes through using any solution of the maximization problem in κ.

E.2 Decomposition algorithm to compute the norm

Applying Algorithm 1 in the special case where λ = 0 yields a decomposition algorithm to compute
the norm itself (see Algorithm E.2).

Algorithm 2 Computation of ΩFp (z)

Require: z ∈ Rd.
1: Let A = {j | zj 6= 0}.
2: if A 6= V then
3: return ΩFA

p (zA)
4: end if
5: Let t ∈ Rd with ti = |zi|p

‖z‖ppF (V )

6: Find A minimizing the submodular function
F − t

7: if A = V then
8: return F (V )1/q‖x‖p
9: else

10: return ΩFA
p (zA) + ΩF

A

p (zAc)
11: end if

F Theoretical Results

In this section, we prove the propositions on consistency, support recovery and the concentration
result of Section 6.5. As there, we consider a fixed design matrix X ∈ Rn×p and y ∈ Rn a vector of
random responses. Given λ > 0, we define ŵ as a minimizer of the regularized least-squares cost:

minw∈Rd
1

2n‖y −Xw‖
2
2 + λΩ(w). (15)

F.1 Proof of Proposition 5 (Support recovery)

Proof. We follow the proof of the case p = ∞ from Bach (2010). Let r = 1
nX
>ε ∈ Rd, which is

normal with mean zero and covariance matrix σ2Q/n. We have for any w ∈ Rp,

Ω(w) > ΩJ(wJ) + ΩJ(wJc) > ΩJ(wJ) + ρΩJc(wJc) > ρΩ(w).

This implies that Ω∗(r) > ρmax{Ω∗J(rJ), (ΩJ)∗(rJc)}.

Moreover, rJc −QJcJQ
−1
JJrJ is normal with covariance matrix

σ2

n
(QJcJc −QJcJQ

−1
JJQJJc) 4 σ2/nQJcJc .

This implies that with probability larger than 1− 3P (Ω∗(r) > λρη/2), we have

Ω∗J(rJ) 6 λ/2 and (ΩJ)∗(rJc −QJcJQ
−1
JJrJ) 6 λη/2.
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We denote by w̃ the unique (because QJJ is invertible) minimum of 1
2n‖y−Xw‖

2
2 +λΩ(w), subject

to wJc = 0. w̃J is defined through QJJ(w̃J −wJ∗)−rJ = −λsJ where sJ ∈ ∂ΩJ(w̃J) (which implies
that Ω∗J(sJ) 6 1) , i.e., w̃J − w∗J = Q−1

JJ (rJ − λsJ). We have:

‖w̃J − w∗J‖∞ 6 max
j∈J
|δ>j Q−1

JJ (rJ − λsJ)|

6 max
j∈J

ΩJ(Q−1
JJδj)Ω

∗
J(rJ − λsJ)|

6 max
j∈J
‖Q−1

JJδj‖pF (J)1−1/p[Ω∗J(rJ) + λΩ∗J(sJ)]

6 max
j∈J

κ−1|J |1/pF (J)1−1/p[Ω∗J(rJ) + λΩ∗J(sJ)] 6
3

2
λ|J |1/pF (J)1−1/pκ−1.

Thus if 2λ|J |1/pF (J)1−1/pκ−1 6 ν, then ‖w̃ − w∗‖∞ 6 3ν
4 , which implies Supp(w̃) ⊃ Supp(w∗).

In the neighborhood of w̃, we have an exact decomposition of the norm, hence, to show that w̃ is the
unique global minimum, we simply need to show that since we have (ΩJ)∗(rJc−QJcJQ

−1
JJrJ) 6 λη/2,

w̃ is the unique minimizer of Eq. (10). For that it suffices to show that (ΩJ)∗(QJcJ(w̃J−w∗J)−rJc) <
λ. We have:

(ΩJ)∗(QJcJ(w̃J − w∗J)− rJc) = (ΩJ)∗(QJcJQ
−1
JJ (rJ − λsJ)− rJc)

6 (ΩJ)∗(QJcJQ
−1
JJrJ − rJc) + λ(ΩJ)∗(QJcJQ

−1
JJsJ)

6 (ΩJ)∗(QJcJQ
−1
JJrJ − rJc) + λ(ΩJ)∗[(ΩJ(Q−1

JJQJj))j∈Jc ]

6 λη/2 + λ(1− η) < λ,

which leads to the desired result.

F.2 Proof of proposition 6 (Consistency)

Proof. Like for the proof of Proposition 5, we have

Ω(x) > ΩJ(xJ) + ΩJ(xJc) > ΩJ(xJ) + ρΩJc(xJc) > ρΩ(x).

Thus, if we assume Ω∗(q) 6 λρ/2, then Ω∗J(qJ) 6 λ/2 and (ΩJ)∗(qJc) 6 λ/2. Let ∆ = ŵ − w∗.

We follow the proof from Bickel et al. (2009) by using the decomposition property of the norm Ω.
We have, by optimality of ŵ:

1

2
∆>Q∆ + λΩ(w∗ + ∆) + q>∆ 6 λΩ(w∗ + ∆) + q>∆ 6 λΩ(w∗)

Using the decomposition property,

λΩJ((w∗ + ∆)J) + λΩJ((w∗ + ∆)Jc) + q>J ∆J + q>Jc∆Jc 6 λΩJ(w∗J),

λΩJ(∆Jc) 6 λΩJ(w∗J)− λΩJ(w∗J + ∆J) + Ω∗J(qJ)ΩJ(∆J) + (ΩJ)∗(qJc)ΩJ(∆Jc), and

(λ− (ΩJ)∗(qJc))ΩJ(∆Jc) 6 (λ+ Ω∗J(qJ))ΩJ(∆J).

Thus ΩJ(∆Jc) 6 3ΩJ(∆J), which implies ∆>Q∆ > κ‖∆J‖22 (by our assumption which generalizes
the usual `1-restricted eigenvalue condition). Moreover, we have:

∆>Q∆ = ∆>(Q∆) 6 Ω(∆)Ω∗(Q∆)

6 Ω(∆)(Ω∗(q) + λ) 6
3λ

2
Ω(∆) by optimality of ŵ

Ω(∆) 6 ΩJ(∆J) + ρ−1ΩJ(∆Jc)

6 ΩJ(∆J)(3 +
1

ρ
) 6

4

ρ
ΩJ(∆J).
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This implies that κΩJ(∆J)2 6 ∆>Q∆ 6 6λ
ρ ΩJ(∆J), and thus ΩJ(∆J) 6 6λ

κρ , which leads to the
desired result, given the previous inequalities.

F.3 Proof of proposition 7

Proof. We have Ω∗(z) = maxA∈DF

‖zA‖q
F (A)1/q

. Thus, from the union bound, we get

P(Ω∗(z) > t) 6
∑
A∈DF

P(‖zA‖qq > tqF (A)).

We can then derive concentration inequalities. We have E‖zA‖q 6 (E‖zA‖qq)1/q = (|A|E|ε|q)1/q 6
2|A|1/qq1/2, where ε is a standard normal random variable. Moreover, ‖zA‖q 6 ‖zA‖2 for q > 2,
and ‖zA‖q 6 |A|1/q−1/2‖zA‖2 for q 6 2. We can thus use the concentration of Lipschitz-continuous
functions of Gaussian variables, to get for p > 2 and u > 0,

P
(
‖zA‖q > 2|A|1/q√q + u

)
6 e−u

2/2.

For p < 2 (i.e., q > 2), we obtain

P
(
‖zA‖q > 2|A|1/q√q + u

)
6 e−u

2|A|1−2/q/2.

We can also bound the expected norm E[Ω∗(z)], as

E[Ω∗(z)] 6 4
√
q log(2|DF |) max

A∈DF

|A|1/q

F (A)1/q
.

Together with Ω∗(z) 6 ‖z‖2 maxA∈DF

|A|(1/q−1/2)+

F (A)1/q
, we get

P
(

Ω∗(z) > 4
√
q log(2|DF |) max

A∈DF

|A|1/q

F (A)1/q
+ u max

A∈DF

|A|(1/q−1/2)+

F (A)1/q

)
6 e−u

2/2.
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