1,322 research outputs found

    Learning with Invariance via Linear Functionals on Reproducing Kernel Hilbert Space

    Get PDF
    Abstract Incorporating invariance information is important for many learning problems. To exploit invariances, most existing methods resort to approximations that either lead to expensive optimization problems such as semi-definite programming, or rely on separation oracles to retain tractability. Some methods further limit the space of functions and settle for non-convex models. In this paper, we propose a framework for learning in reproducing kernel Hilbert spaces (RKHS) using local invariances that explicitly characterize the behavior of the target function around data instances. These invariances are compactly encoded as linear functionals whose value are penalized by some loss function. Based on a representer theorem that we establish, our formulation can be efficiently optimized via a convex program. For the representer theorem to hold, the linear functionals are required to be bounded in the RKHS, and we show that this is true for a variety of commonly used RKHS and invariances. Experiments on learning with unlabeled data and transform invariances show that the proposed method yields better or similar results compared with the state of the art

    To go deep or wide in learning?

    Full text link
    To achieve acceptable performance for AI tasks, one can either use sophisticated feature extraction methods as the first layer in a two-layered supervised learning model, or learn the features directly using a deep (multi-layered) model. While the first approach is very problem-specific, the second approach has computational overheads in learning multiple layers and fine-tuning of the model. In this paper, we propose an approach called wide learning based on arc-cosine kernels, that learns a single layer of infinite width. We propose exact and inexact learning strategies for wide learning and show that wide learning with single layer outperforms single layer as well as deep architectures of finite width for some benchmark datasets.Comment: 9 pages, 1 figure, Accepted for publication in Seventeenth International Conference on Artificial Intelligence and Statistic

    Learning with Algebraic Invariances, and the Invariant Kernel Trick

    Get PDF
    When solving data analysis problems it is important to integrate prior knowledge and/or structural invariances. This paper contributes by a novel framework for incorporating algebraic invariance structure into kernels. In particular, we show that algebraic properties such as sign symmetries in data, phase independence, scaling etc. can be included easily by essentially performing the kernel trick twice. We demonstrate the usefulness of our theory in simulations on selected applications such as sign-invariant spectral clustering and underdetermined ICA

    Advances in Hyperspectral Image Classification: Earth monitoring with statistical learning methods

    Full text link
    Hyperspectral images show similar statistical properties to natural grayscale or color photographic images. However, the classification of hyperspectral images is more challenging because of the very high dimensionality of the pixels and the small number of labeled examples typically available for learning. These peculiarities lead to particular signal processing problems, mainly characterized by indetermination and complex manifolds. The framework of statistical learning has gained popularity in the last decade. New methods have been presented to account for the spatial homogeneity of images, to include user's interaction via active learning, to take advantage of the manifold structure with semisupervised learning, to extract and encode invariances, or to adapt classifiers and image representations to unseen yet similar scenes. This tutuorial reviews the main advances for hyperspectral remote sensing image classification through illustrative examples.Comment: IEEE Signal Processing Magazine, 201
    • …
    corecore