209 research outputs found

    Convex Graph Invariant Relaxations For Graph Edit Distance

    Get PDF
    The edit distance between two graphs is a widely used measure of similarity that evaluates the smallest number of vertex and edge deletions/insertions required to transform one graph to another. It is NP-hard to compute in general, and a large number of heuristics have been proposed for approximating this quantity. With few exceptions, these methods generally provide upper bounds on the edit distance between two graphs. In this paper, we propose a new family of computationally tractable convex relaxations for obtaining lower bounds on graph edit distance. These relaxations can be tailored to the structural properties of the particular graphs via convex graph invariants. Specific examples that we highlight in this paper include constraints on the graph spectrum as well as (tractable approximations of) the stability number and the maximum-cut values of graphs. We prove under suitable conditions that our relaxations are tight (i.e., exactly compute the graph edit distance) when one of the graphs consists of few eigenvalues. We also validate the utility of our framework on synthetic problems as well as real applications involving molecular structure comparison problems in chemistry.Comment: 27 pages, 7 figure

    Convex graph invariant relaxations for graph edit distance

    Get PDF
    The edit distance between two graphs is a widely used measure of similarity that evaluates the smallest number of vertex and edge deletions/insertions required to transform one graph to another. It is NP-hard to compute in general, and a large number of heuristics have been proposed for approximating this quantity. With few exceptions, these methods generally provide upper bounds on the edit distance between two graphs. In this paper, we propose a new family of computationally tractable convex relaxations for obtaining lower bounds on graph edit distance. These relaxations can be tailored to the structural properties of the particular graphs via convex graph invariants. Specific examples that we highlight in this paper include constraints on the graph spectrum as well as (tractable approximations of) the stability number and the maximum-cut values of graphs. We prove under suitable conditions that our relaxations are tight (i.e., exactly compute the graph edit distance) when one of the graphs consists of few eigenvalues. We also validate the utility of our framework on synthetic problems as well as real applications involving molecular structure comparison problems in chemistry

    Many-to-Many Graph Matching: a Continuous Relaxation Approach

    Get PDF
    Graphs provide an efficient tool for object representation in various computer vision applications. Once graph-based representations are constructed, an important question is how to compare graphs. This problem is often formulated as a graph matching problem where one seeks a mapping between vertices of two graphs which optimally aligns their structure. In the classical formulation of graph matching, only one-to-one correspondences between vertices are considered. However, in many applications, graphs cannot be matched perfectly and it is more interesting to consider many-to-many correspondences where clusters of vertices in one graph are matched to clusters of vertices in the other graph. In this paper, we formulate the many-to-many graph matching problem as a discrete optimization problem and propose an approximate algorithm based on a continuous relaxation of the combinatorial problem. We compare our method with other existing methods on several benchmark computer vision datasets.Comment: 1

    Graph matching: relax or not?

    Full text link
    We consider the problem of exact and inexact matching of weighted undirected graphs, in which a bijective correspondence is sought to minimize a quadratic weight disagreement. This computationally challenging problem is often relaxed as a convex quadratic program, in which the space of permutations is replaced by the space of doubly-stochastic matrices. However, the applicability of such a relaxation is poorly understood. We define a broad class of friendly graphs characterized by an easily verifiable spectral property. We prove that for friendly graphs, the convex relaxation is guaranteed to find the exact isomorphism or certify its inexistence. This result is further extended to approximately isomorphic graphs, for which we develop an explicit bound on the amount of weight disagreement under which the relaxation is guaranteed to find the globally optimal approximate isomorphism. We also show that in many cases, the graph matching problem can be further harmlessly relaxed to a convex quadratic program with only n separable linear equality constraints, which is substantially more efficient than the standard relaxation involving 2n equality and n^2 inequality constraints. Finally, we show that our results are still valid for unfriendly graphs if additional information in the form of seeds or attributes is allowed, with the latter satisfying an easy to verify spectral characteristic

    Convex Relaxations for Graph and Inverse Eigenvalue Problems

    Get PDF
    This thesis is concerned with presenting convex optimization based tractable solutions for three fundamental problems: 1. Planted subgraph problem: Given two graphs, identifying the subset of vertices of the larger graph corresponding to the smaller one. 2. Graph edit distance problem: Given two graphs, calculating the number of edge/vertex additions and deletions required to transform one graph into the other. 3. Affine inverse eigenvalue problem: Given a subspace Δ ⊂ &#x1D54A;ⁿ and a vector of eigenvalues λ ∈ ℝⁿ, finding a symmetric matrix with spectrum λ contained in Δ. These combinatorial and algebraic problems frequently arise in various application domains such as social networks, computational biology, chemoinformatics, and control theory. Nevertheless, exactly solving them in practice is only possible for very small instances due to their complexity. For each of these problems, we introduce convex relaxations which succeed in providing exact or approximate solutions in a computationally tractable manner. Our relaxations for the two graph problems are based on convex graph invariants, which are functions of graphs that do not depend on a particular labeling. One of these convex relaxations, coined the Schur-Horn orbitope, corresponds to the convex hull of all matrices with a given spectrum, and plays a prominent role in this thesis. Specifically, we utilize relaxations based on the Schur-Horn orbitope in the context of the planted subgraph problem and the graph edit distance problem. For both of these problems, we identify conditions under which the Schur-Horn orbitope based relaxations exactly solve the corresponding problem with overwhelming probability. Specifically, we demonstrate that these relaxations turn out to be particularly effective when the underlying graph has a spectrum comprised of few distinct eigenvalues with high multiplicities. In addition to relaxations based on the Schur-Horn orbitope, we also consider outer-approximations based on other convex graph invariants such as the stability number and the maximum-cut value for the graph edit distance problem. On the other hand, for the inverse eigenvalue problem, we investigate two relaxations arising from a sum of squares hierarchy. These relaxations have different approximation qualities, and accordingly induce different computational costs. We utilize our framework to generate solutions for, or certify unsolvability of the underlying inverse eigenvalue problem. We particularly emphasize the computational aspect of our relaxations throughout this thesis. We corroborate the utility of our methods with various numerical experiments.</p

    A Family of Tractable Graph Distances

    Full text link
    Important data mining problems such as nearest-neighbor search and clustering admit theoretical guarantees when restricted to objects embedded in a metric space. Graphs are ubiquitous, and clustering and classification over graphs arise in diverse areas, including, e.g., image processing and social networks. Unfortunately, popular distance scores used in these applications, that scale over large graphs, are not metrics and thus come with no guarantees. Classic graph distances such as, e.g., the chemical and the CKS distance are arguably natural and intuitive, and are indeed also metrics, but they are intractable: as such, their computation does not scale to large graphs. We define a broad family of graph distances, that includes both the chemical and the CKS distance, and prove that these are all metrics. Crucially, we show that our family includes metrics that are tractable. Moreover, we extend these distances by incorporating auxiliary node attributes, which is important in practice, while maintaining both the metric property and tractability.Comment: Extended version of paper appearing in SDM 201

    Convex Relaxations for Permutation Problems

    Full text link
    Seriation seeks to reconstruct a linear order between variables using unsorted, pairwise similarity information. It has direct applications in archeology and shotgun gene sequencing for example. We write seriation as an optimization problem by proving the equivalence between the seriation and combinatorial 2-SUM problems on similarity matrices (2-SUM is a quadratic minimization problem over permutations). The seriation problem can be solved exactly by a spectral algorithm in the noiseless case and we derive several convex relaxations for 2-SUM to improve the robustness of seriation solutions in noisy settings. These convex relaxations also allow us to impose structural constraints on the solution, hence solve semi-supervised seriation problems. We derive new approximation bounds for some of these relaxations and present numerical experiments on archeological data, Markov chains and DNA assembly from shotgun gene sequencing data.Comment: Final journal version, a few typos and references fixe

    Quantifying and minimizing risk of conflict in social networks

    Get PDF
    Controversy, disagreement, conflict, polarization and opinion divergence in social networks have been the subject of much recent research. In particular, researchers have addressed the question of how such concepts can be quantified given people’s prior opinions, and how they can be optimized by influencing the opinion of a small number of people or by editing the network’s connectivity. Here, rather than optimizing such concepts given a specific set of prior opinions, we study whether they can be optimized in the average case and in the worst case over all sets of prior opinions. In particular, we derive the worst-case and average-case conflict risk of networks, and we propose algorithms for optimizing these. For some measures of conflict, these are non-convex optimization problems with many local minima. We provide a theoretical and empirical analysis of the nature of some of these local minima, and show how they are related to existing organizational structures. Empirical results show how a small number of edits quickly decreases its conflict risk, both average-case and worst-case. Furthermore, it shows that minimizing average-case conflict risk often does not reduce worst-case conflict risk. Minimizing worst-case conflict risk on the other hand, while computationally more challenging, is generally effective at minimizing both worst-case as well as average-case conflict risk
    • 

    corecore