30 research outputs found

    Strongly Monotone Drawings of Planar Graphs

    Get PDF
    A straight-line drawing of a graph is a monotone drawing if for each pair of vertices there is a path which is monotonically increasing in some direction, and it is called a strongly monotone drawing if the direction of monotonicity is given by the direction of the line segment connecting the two vertices. We present algorithms to compute crossing-free strongly monotone drawings for some classes of planar graphs; namely, 3-connected planar graphs, outerplanar graphs, and 2-trees. The drawings of 3-connected planar graphs are based on primal-dual circle packings. Our drawings of outerplanar graphs are based on a new algorithm that constructs strongly monotone drawings of trees which are also convex. For irreducible trees, these drawings are strictly convex

    Empty Rectangles and Graph Dimension

    Full text link
    We consider rectangle graphs whose edges are defined by pairs of points in diagonally opposite corners of empty axis-aligned rectangles. The maximum number of edges of such a graph on nn points is shown to be 1/4 n^2 +n -2. This number also has other interpretations: * It is the maximum number of edges of a graph of dimension \bbetween{3}{4}, i.e., of a graph with a realizer of the form \pi_1,\pi_2,\ol{\pi_1},\ol{\pi_2}. * It is the number of 1-faces in a special Scarf complex. The last of these interpretations allows to deduce the maximum number of empty axis-aligned rectangles spanned by 4-element subsets of a set of nn points. Moreover, it follows that the extremal point sets for the two problems coincide. We investigate the maximum number of of edges of a graph of dimension ≬34\between{3}{4}, i.e., of a graph with a realizer of the form \pi_1,\pi_2,\pi_3,\ol{\pi_3}. This maximum is shown to be 1/4n2+O(n)1/4 n^2 + O(n). Box graphs are defined as the 3-dimensional analog of rectangle graphs. The maximum number of edges of such a graph on nn points is shown to be 7/16n2+o(n2)7/16 n^2 + o(n^2)

    Strictly convex drawings of planar graphs

    Full text link
    Every three-connected planar graph with n vertices has a drawing on an O(n^2) x O(n^2) grid in which all faces are strictly convex polygons. These drawings are obtained by perturbing (not strictly) convex drawings on O(n) x O(n) grids. More generally, a strictly convex drawing exists on a grid of size O(W) x O(n^4/W), for any choice of a parameter W in the range n<W<n^2. Tighter bounds are obtained when the faces have fewer sides. In the proof, we derive an explicit lower bound on the number of primitive vectors in a triangle.Comment: 20 pages, 13 figures. to be published in Documenta Mathematica. The revision includes numerous small additions, corrections, and improvements, in particular: - a discussion of the constants in the O-notation, after the statement of thm.1. - a different set-up and clarification of the case distinction for Lemma

    Orienting triangulations

    Full text link
    We prove that any triangulation of a surface different from the sphere and the projective plane admits an orientation without sinks such that every vertex has outdegree divisible by three. This confirms a conjecture of Bar\'at and Thomassen and is a step towards a generalization of Schnyder woods to higher genus surfaces

    4-labelings and grid embeddings of plane quadrangulations

    Get PDF
    We show that each quadrangulation on nn vertices has a closed rectangle of influence drawing on the (n−2)×(n−2)(n-2) \times (n-2) grid. Further, we present a simple algorithm to obtain a straight-line drawing of a quadrangulation on the ⌈n2⌉×⌈3n4⌉\Big\lceil\frac{n}{2}\Big\rceil \times \Big\lceil\frac{3n}{4}\Big\rceil grid. This is not optimal but has the advantage over other existing algorithms that it is not needed to add edges to the quadrangulation to make it 44-connected. The algorithm is based on angle labeling and simple face counting in regions analogous to Schnyder's grid embedding for triangulation. This extends previous results on book embeddings for quadrangulations from Felsner, Huemer, Kappes, and Orden (2008). Our approach also yields a representation of a quadrangulation as a pair of rectangulations with a curious property

    4-labelings and grid embeddings of plane quadrangulations

    Get PDF
    AbstractA straight-line drawing of a planar graph G is a closed rectangle-of-influence drawing if for each edge uv, the closed axis-parallel rectangle with opposite corners u and v contains no other vertices. We show that each quadrangulation on n vertices has a closed rectangle-of-influence drawing on the (n−3)×(n−3) grid.The algorithm is based on angle labeling and simple face counting in regions. This answers the question of what would be a grid embedding of quadrangulations analogous to Schnyder’s classical algorithm for embedding triangulations and extends previous results on book embeddings for quadrangulations from Felsner, Huemer, Kappes, and Orden.A further compaction step yields a straight-line drawing of a quadrangulation on the (⌈n2⌉−1)×(⌈3n4⌉−1) grid. The advantage over other existing algorithms is that it is not necessary to add edges to the quadrangulation to make it 4-connected
    corecore