4,442 research outputs found

    Convex computation of the region of attraction of polynomial control systems

    Get PDF
    We address the long-standing problem of computing the region of attraction (ROA) of a target set (e.g., a neighborhood of an equilibrium point) of a controlled nonlinear system with polynomial dynamics and semialgebraic state and input constraints. We show that the ROA can be computed by solving an infinite-dimensional convex linear programming (LP) problem over the space of measures. In turn, this problem can be solved approximately via a classical converging hierarchy of convex finite-dimensional linear matrix inequalities (LMIs). Our approach is genuinely primal in the sense that convexity of the problem of computing the ROA is an outcome of optimizing directly over system trajectories. The dual infinite-dimensional LP on nonnegative continuous functions (approximated by polynomial sum-of-squares) allows us to generate a hierarchy of semialgebraic outer approximations of the ROA at the price of solving a sequence of LMI problems with asymptotically vanishing conservatism. This sharply contrasts with the existing literature which follows an exclusively dual Lyapunov approach yielding either nonconvex bilinear matrix inequalities or conservative LMI conditions. The approach is simple and readily applicable as the outer approximations are the outcome of a single semidefinite program with no additional data required besides the problem description

    Convex Computation of the Region of Attraction of Polynomial Control Systems

    Full text link

    Help on SOS

    Get PDF
    In this issue of IEEE Control Systems Magazine, Andy Packard and friends respond to a query on determining the region of attraction using sum-of-squares methods

    Controller Synthesis for Discrete-Time Polynomial Systems via Occupation Measures

    Full text link
    In this paper, we design nonlinear state feedback controllers for discrete-time polynomial dynamical systems via the occupation measure approach. We propose the discrete-time controlled Liouville equation, and use it to formulate the controller synthesis problem as an infinite-dimensional linear programming problem on measures, which is then relaxed as finite-dimensional semidefinite programming problems on moments of measures and their duals on sums-of-squares polynomials. Nonlinear controllers can be extracted from the solutions to the relaxed problems. The advantage of the occupation measure approach is that we solve convex problems instead of generally non-convex problems, and the computational complexity is polynomial in the state and input dimensions, and hence the approach is more scalable. In addition, we show that the approach can be applied to over-approximating the backward reachable set of discrete-time autonomous polynomial systems and the controllable set of discrete-time polynomial systems under known state feedback control laws. We illustrate our approach on several dynamical systems

    Geometric Properties of Isostables and Basins of Attraction of Monotone Systems

    Get PDF
    In this paper, we study geometric properties of basins of attraction of monotone systems. Our results are based on a combination of monotone systems theory and spectral operator theory. We exploit the framework of the Koopman operator, which provides a linear infinite-dimensional description of nonlinear dynamical systems and spectral operator-theoretic notions such as eigenvalues and eigenfunctions. The sublevel sets of the dominant eigenfunction form a family of nested forward-invariant sets and the basin of attraction is the largest of these sets. The boundaries of these sets, called isostables, allow studying temporal properties of the system. Our first observation is that the dominant eigenfunction is increasing in every variable in the case of monotone systems. This is a strong geometric property which simplifies the computation of isostables. We also show how variations in basins of attraction can be bounded under parametric uncertainty in the vector field of monotone systems. Finally, we study the properties of the parameter set for which a monotone system is multistable. Our results are illustrated on several systems of two to four dimensions.Comment: 12 pages, to appear in IEEE Transaction on Automatic Contro
    • 

    corecore