127 research outputs found

    Introduction for speech and language for interactive robots

    Get PDF
    This special issue includes research articles which apply spoken language processing to robots that interact with human users through speech, possibly combined with other modalities. Robots that can listen to human speech, understand it, interact according to the conveyed meaning, and respond represent major research and technological challenges. Their common aim is to equip robots with natural interaction abilities. However, robotics and spoken language processing are areas that are typically studied within their respective communities with limited communication across disciplinary boundaries. The articles in this special issue represent examples that address the need for an increased multidisciplinary exchange of ideas

    Four Mode Based Dialogue Management with Modified POMDP Model

    Get PDF
    This thesis proposes a method to manage the interaction between the user and the system dynamically, through speech or text input which updates the user goals, select system actions and calculate rewards for each system response at each time-stamp. The main focus is made on the dialog manager, which decides how to continue the dialogue. We have used POMDP technique, as it maintains a belief distribution on the dialogue states based on the observations over the dialogue even in a noisy environment. Four contextual control modes are introduced in dialogue management for decision-making mechanism, and to keep track of machine behaviour for each dialogue state. The result obtained proves that our proposed framework has overcome the limitations of prior POMDP methods, and exactly understands the actual intention of the users within the available time, providing very interactive conversation between the user and the computer

    BWIBots: A platform for bridging the gap between AI and human–robot interaction research

    Get PDF
    Recent progress in both AI and robotics have enabled the development of general purpose robot platforms that are capable of executing a wide variety of complex, temporally extended service tasks in open environments. This article introduces a novel, custom-designed multi-robot platform for research on AI, robotics, and especially human–robot interaction for service robots. Called BWIBots, the robots were designed as a part of the Building-Wide Intelligence (BWI) project at the University of Texas at Austin. The article begins with a description of, and justification for, the hardware and software design decisions underlying the BWIBots, with the aim of informing the design of such platforms in the future. It then proceeds to present an overview of various research contributions that have enabled the BWIBots to better (a) execute action sequences to complete user requests, (b) efficiently ask questions to resolve user requests, (c) understand human commands given in natural language, and (d) understand human intention from afar. The article concludes with a look forward towards future research opportunities and applications enabled by the BWIBot platform

    Reinforced Natural Language Interfaces via Entropy Decomposition

    Full text link
    In this paper, we study the technical problem of developing conversational agents that can quickly adapt to unseen tasks, learn task-specific communication tactics, and help listeners finish complex, temporally extended tasks. We find that the uncertainty of language learning can be decomposed to an entropy term and a mutual information term, corresponding to the structural and functional aspect of language, respectively. Combined with reinforcement learning, our method automatically requests human samples for training when adapting to new tasks and learns communication protocols that are succinct and helpful for task completion. Human and simulation test results on a referential game and a 3D navigation game prove the effectiveness of the proposed method
    corecore