16 research outputs found

    Towards interactive betweenness centrality estimation for transportation network using capsule network

    Get PDF
    Includes bibliographical references.2022 Fall.The node importance of a graph needs to be estimated for many graph-based applications. One of the most popular metrics for measuring node importance is betweenness centrality, which measures the amount of influence a node has over the flow of information in a graph. However, the computation complexity of calculating betweenness centrality is extremely high with large- scale graphs. This is especially true when analyzing the road networks of states with millions of nodes and edges, making it infeasible to calculate their betweenness centrality (BC) in real- time using traditional iterative methods. The application of a machine learning model to predict the importance of nodes provides opportunities to address this issue. Graph Neural Networks (GNNs), which have been gaining popularity in recent years, are particularly well-suited for graph analysis. In this study, we propose a deep learning architecture RoadCaps to estimate the BC by merging Capsule Neural Networks with Graph Convolutional Networks (GCN), a convolution operation based GNN. We target the effective aggregation of features from neighbor nodes to approximate the correct BC of a node. We leverage patterns capturing the strength of the capsule network to effectively estimate the node level BC from the high-level information generated by the GCN block. We further compare the model accuracy and effectiveness of RoadCaps with the other two GCN-based models. We also analyze the efficiency and effectiveness of RoadCaps for different aspects like scalability and robustness. We perform one empirical benchmark with the road network for the entire state of California. The overall analysis shows that our proposed network can provide more accurate road importance estimation, which is helpful for rapid response planning such as evacuation during wildfires and flooding

    Characterization of Time-variant and Time-invariant Assessment of Suicidality on Reddit using C-SSRS

    Get PDF
    Suicide is the 10th leading cause of death in the U.S (1999-2019). However, predicting when someone will attempt suicide has been nearly impossible. In the modern world, many individuals suffering from mental illness seek emotional support and advice on well-known and easily-accessible social media platforms such as Reddit. While prior artificial intelligence research has demonstrated the ability to extract valuable information from social media on suicidal thoughts and behaviors, these efforts have not considered both severity and temporality of risk. The insights made possible by access to such data have enormous clinical potential - most dramatically envisioned as a trigger to employ timely and targeted interventions (i.e., voluntary and involuntary psychiatric hospitalization) to save lives. In this work, we address this knowledge gap by developing deep learning algorithms to assess suicide risk in terms of severity and temporality from Reddit data based on the Columbia Suicide Severity Rating Scale (C-SSRS). In particular, we employ two deep learning approaches: time-variant and time-invariant modeling, for user-level suicide risk assessment, and evaluate their performance against a clinician-adjudicated gold standard Reddit corpus annotated based on the C-SSRS. Our results suggest that the time-variant approach outperforms the time-invariant method in the assessment of suicide-related ideations and supportive behaviors (AUC:0.78), while the time-invariant model performed better in predicting suicide-related behaviors and suicide attempt (AUC:0.64). The proposed approach can be integrated with clinical diagnostic interviews for improving suicide risk assessments.Comment: 24 Pages, 8 Tables, 6 Figures; Accepted by PLoS One ; One of the two mentioned Datasets in the manuscript has Closed Access. We will make it public after PLoS One produces the manuscrip

    GNNLens: A Visual Analytics Approach for Prediction Error Diagnosis of Graph Neural Networks

    Full text link
    Graph Neural Networks (GNNs) aim to extend deep learning techniques to graph data and have achieved significant progress in graph analysis tasks (e.g., node classification) in recent years. However, similar to other deep neural networks like Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), GNNs behave like a black box with their details hidden from model developers and users. It is therefore difficult to diagnose possible errors of GNNs. Despite many visual analytics studies being done on CNNs and RNNs, little research has addressed the challenges for GNNs. This paper fills the research gap with an interactive visual analysis tool, GNNLens, to assist model developers and users in understanding and analyzing GNNs. Specifically, Parallel Sets View and Projection View enable users to quickly identify and validate error patterns in the set of wrong predictions; Graph View and Feature Matrix View offer a detailed analysis of individual nodes to assist users in forming hypotheses about the error patterns. Since GNNs jointly model the graph structure and the node features, we reveal the relative influences of the two types of information by comparing the predictions of three models: GNN, Multi-Layer Perceptron (MLP), and GNN Without Using Features (GNNWUF). Two case studies and interviews with domain experts demonstrate the effectiveness of GNNLens in facilitating the understanding of GNN models and their errors.Comment: 15 page

    Graph-Based Conversation Analysis in Social Media

    Get PDF
    Social media platforms offer their audience the possibility to reply to posts through comments and reactions. This allows social media users to express their ideas and opinions on shared content, thus opening virtual discussions. Most studies on social networks have focused only on user relationships or on the shared content, while ignoring the valuable information hidden in the digital conversations, in terms of structure of the discussion and relation between contents, which is essential for understanding online communication behavior. This work proposes a graph-based framework to assess the shape and structure of online conversations. The analysis was composed of two main stages: intent analysis and network generation. Users' intention was detected using keyword-based classification, followed by the implementation of machine learning-based classification algorithms for uncategorized comments. Afterwards, human-in-the-loop was involved in improving the keyword-based classification. To extract essential information on social media communication patterns among the users, we built conversation graphs using a directed multigraph network and we show our model at work in two real-life experiments. The first experiment used data from a real social media challenge and it was able to categorize 90% of comments with 98% accuracy. The second experiment focused on COVID vaccine-related discussions in online forums and investigated the stance and sentiment to understand how the comments are affected by their parent discussion. Finally, the most popular online discussion patterns were mined and interpreted. We see that the dynamics obtained from conversation graphs are similar to traditional communication activities
    corecore