32,203 research outputs found

    Distributed Adaptive Nearest Neighbor Classifier: Algorithm and Theory

    Full text link
    When data is of an extraordinarily large size or physically stored in different locations, the distributed nearest neighbor (NN) classifier is an attractive tool for classification. We propose a novel distributed adaptive NN classifier for which the number of nearest neighbors is a tuning parameter stochastically chosen by a data-driven criterion. An early stopping rule is proposed when searching for the optimal tuning parameter, which not only speeds up the computation but also improves the finite sample performance of the proposed Algorithm. Convergence rate of excess risk of the distributed adaptive NN classifier is investigated under various sub-sample size compositions. In particular, we show that when the sub-sample sizes are sufficiently large, the proposed classifier achieves the nearly optimal convergence rate. Effectiveness of the proposed approach is demonstrated through simulation studies as well as an empirical application to a real-world dataset

    An adaptive multiclass nearest neighbor classifier

    Full text link
    We consider a problem of multiclass classification, where the training sample Sn={(Xi,Yi)}i=1nS_n = \{(X_i, Y_i)\}_{i=1}^n is generated from the model P(Y=m∣X=x)=ηm(x)\mathbb P(Y = m | X = x) = \eta_m(x), 1≤m≤M1 \leq m \leq M, and η1(x),…,ηM(x)\eta_1(x), \dots, \eta_M(x) are unknown α\alpha-Holder continuous functions.Given a test point XX, our goal is to predict its label. A widely used k\mathsf k-nearest-neighbors classifier constructs estimates of η1(X),…,ηM(X)\eta_1(X), \dots, \eta_M(X) and uses a plug-in rule for the prediction. However, it requires a proper choice of the smoothing parameter k\mathsf k, which may become tricky in some situations. In our solution, we fix several integers n1,…,nKn_1, \dots, n_K, compute corresponding nkn_k-nearest-neighbor estimates for each mm and each nkn_k and apply an aggregation procedure. We study an algorithm, which constructs a convex combination of these estimates such that the aggregated estimate behaves approximately as well as an oracle choice. We also provide a non-asymptotic analysis of the procedure, prove its adaptation to the unknown smoothness parameter α\alpha and to the margin and establish rates of convergence under mild assumptions.Comment: Accepted in ESAIM: Probability & Statistics. The original publication is available at www.esaim-ps.or

    An adaptive nearest neighbor rule for classification

    Full text link
    We introduce a variant of the kk-nearest neighbor classifier in which kk is chosen adaptively for each query, rather than supplied as a parameter. The choice of kk depends on properties of each neighborhood, and therefore may significantly vary between different points. (For example, the algorithm will use larger kk for predicting the labels of points in noisy regions.) We provide theory and experiments that demonstrate that the algorithm performs comparably to, and sometimes better than, kk-NN with an optimal choice of kk. In particular, we derive bounds on the convergence rates of our classifier that depend on a local quantity we call the `advantage' which is significantly weaker than the Lipschitz conditions used in previous convergence rate proofs. These generalization bounds hinge on a variant of the seminal Uniform Convergence Theorem due to Vapnik and Chervonenkis; this variant concerns conditional probabilities and may be of independent interest

    Classification with the nearest neighbor rule in general finite dimensional spaces: necessary and sufficient conditions

    Get PDF
    Given an nn-sample of random vectors (Xi,Yi)1≤i≤n(X_i,Y_i)_{1 \leq i \leq n} whose joint law is unknown, the long-standing problem of supervised classification aims to \textit{optimally} predict the label YY of a given a new observation XX. In this context, the nearest neighbor rule is a popular flexible and intuitive method in non-parametric situations. Even if this algorithm is commonly used in the machine learning and statistics communities, less is known about its prediction ability in general finite dimensional spaces, especially when the support of the density of the observations is Rd\mathbb{R}^d. This paper is devoted to the study of the statistical properties of the nearest neighbor rule in various situations. In particular, attention is paid to the marginal law of XX, as well as the smoothness and margin properties of the \textit{regression function} η(X)=E[Y∣X]\eta(X) = \mathbb{E}[Y | X]. We identify two necessary and sufficient conditions to obtain uniform consistency rates of classification and to derive sharp estimates in the case of the nearest neighbor rule. Some numerical experiments are proposed at the end of the paper to help illustrate the discussion.Comment: 53 Pages, 3 figure
    • …
    corecore