636 research outputs found

    Asynchronous Optimization Methods for Efficient Training of Deep Neural Networks with Guarantees

    Full text link
    Asynchronous distributed algorithms are a popular way to reduce synchronization costs in large-scale optimization, and in particular for neural network training. However, for nonsmooth and nonconvex objectives, few convergence guarantees exist beyond cases where closed-form proximal operator solutions are available. As most popular contemporary deep neural networks lead to nonsmooth and nonconvex objectives, there is now a pressing need for such convergence guarantees. In this paper, we analyze for the first time the convergence of stochastic asynchronous optimization for this general class of objectives. In particular, we focus on stochastic subgradient methods allowing for block variable partitioning, where the shared-memory-based model is asynchronously updated by concurrent processes. To this end, we first introduce a probabilistic model which captures key features of real asynchronous scheduling between concurrent processes; under this model, we establish convergence with probability one to an invariant set for stochastic subgradient methods with momentum. From the practical perspective, one issue with the family of methods we consider is that it is not efficiently supported by machine learning frameworks, as they mostly focus on distributed data-parallel strategies. To address this, we propose a new implementation strategy for shared-memory based training of deep neural networks, whereby concurrent parameter servers are utilized to train a partitioned but shared model in single- and multi-GPU settings. Based on this implementation, we achieve on average 1.2x speed-up in comparison to state-of-the-art training methods for popular image classification tasks without compromising accuracy

    A Simple Proximal Stochastic Gradient Method for Nonsmooth Nonconvex Optimization

    Full text link
    We analyze stochastic gradient algorithms for optimizing nonconvex, nonsmooth finite-sum problems. In particular, the objective function is given by the summation of a differentiable (possibly nonconvex) component, together with a possibly non-differentiable but convex component. We propose a proximal stochastic gradient algorithm based on variance reduction, called ProxSVRG+. Our main contribution lies in the analysis of ProxSVRG+. It recovers several existing convergence results and improves/generalizes them (in terms of the number of stochastic gradient oracle calls and proximal oracle calls). In particular, ProxSVRG+ generalizes the best results given by the SCSG algorithm, recently proposed by [Lei et al., 2017] for the smooth nonconvex case. ProxSVRG+ is also more straightforward than SCSG and yields simpler analysis. Moreover, ProxSVRG+ outperforms the deterministic proximal gradient descent (ProxGD) for a wide range of minibatch sizes, which partially solves an open problem proposed in [Reddi et al., 2016b]. Also, ProxSVRG+ uses much less proximal oracle calls than ProxSVRG [Reddi et al., 2016b]. Moreover, for nonconvex functions satisfied Polyak-\L{}ojasiewicz condition, we prove that ProxSVRG+ achieves a global linear convergence rate without restart unlike ProxSVRG. Thus, it can \emph{automatically} switch to the faster linear convergence in some regions as long as the objective function satisfies the PL condition locally in these regions. ProxSVRG+ also improves ProxGD and ProxSVRG/SAGA, and generalizes the results of SCSG in this case. Finally, we conduct several experiments and the experimental results are consistent with the theoretical results.Comment: 32nd Conference on Neural Information Processing Systems (NeurIPS 2018

    An Accelerated Stochastic ADMM for Nonconvex and Nonsmooth Finite-Sum Optimization

    Full text link
    The nonconvex and nonsmooth finite-sum optimization problem with linear constraint has attracted much attention in the fields of artificial intelligence, computer, and mathematics, due to its wide applications in machine learning and the lack of efficient algorithms with convincing convergence theories. A popular approach to solve it is the stochastic Alternating Direction Method of Multipliers (ADMM), but most stochastic ADMM-type methods focus on convex models. In addition, the variance reduction (VR) and acceleration techniques are useful tools in the development of stochastic methods due to their simplicity and practicability in providing acceleration characteristics of various machine learning models. However, it remains unclear whether accelerated SVRG-ADMM algorithm (ASVRG-ADMM), which extends SVRG-ADMM by incorporating momentum techniques, exhibits a comparable acceleration characteristic or convergence rate in the nonconvex setting. To fill this gap, we consider a general nonconvex nonsmooth optimization problem and study the convergence of ASVRG-ADMM. By utilizing a well-defined potential energy function, we establish its sublinear convergence rate O(1/T)O(1/T), where TT denotes the iteration number. Furthermore, under the additional Kurdyka-Lojasiewicz (KL) property which is less stringent than the frequently used conditions for showcasing linear convergence rates, such as strong convexity, we show that the ASVRG-ADMM sequence has a finite length and converges to a stationary solution with a linear convergence rate. Several experiments on solving the graph-guided fused lasso problem and regularized logistic regression problem validate that the proposed ASVRG-ADMM performs better than the state-of-the-art methods.Comment: 40 Pages, 8 figure
    • …
    corecore