4 research outputs found

    Distributed Adaptive Control for Nonlinear Heterogeneous Multi-agent Systems with Different Dimensions and Time Delay

    Get PDF
    A distributed neural network adaptive feedback control system is designed for a class of nonlinear multi-agent systems with time delay and nonidentical dimensions. In contrast to previous works on nonlinear heterogeneous multi-agent with the same dimension, particular features are proposed for each agent with different dimensions, and similar parameters are defined, which will be combined parameters of the controller. Second, a novel distributed control based on similarity parameters is proposed using linear matrix inequality (LMI) and Lyapunov stability theory, establishing that all signals in a closed loop system are eventually ultimately bounded. The consistency tracking error steadily decreases to a field with a small number of zeros. Finally, simulated examples with different time delays are utilized to test the effectiveness of the proposed control technique

    Without Diagonal Nonlinear Requirements: The More General P

    Get PDF
    Continuous-time recurrent neural networks (RNNs) play an important part in practical applications. Recently, due to the ability of assuring the convergence of the equilibriums on the boundary line between stable and unstable, the study on the critical dynamics behaviors of RNNs has drawn especial attentions. In this paper, a new asymptotical stable theorem and two corollaries are presented for the unified RNNs, that is, the UPPAM RNNs. The analysis results given in this paper are under the generally P-critical conditions, which improve substantially upon the existing relevant critical convergence and stability results, and most important, the compulsory requirement of diagonally nonlinear activation mapping in most recent researches is removed. As a result, the theory in this paper can be applied more generally
    corecore