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Continuous-time recurrent neural networks (RNNs) play an important part in practical applications. Recently, due to the ability
of assuring the convergence of the equilibriums on the boundary line between stable and unstable, the study on the critical
dynamics behaviors of RNNs has drawn especial attentions. In this paper, a new asymptotical stable theorem and two corollaries
are presented for the unified RNNs, that is, the UPPAM RNNs. The analysis results given in this paper are under the generally
𝑃-critical conditions, which improve substantially upon the existing relevant critical convergence and stability results, and most
important, the compulsory requirement of diagonally nonlinear activation mapping in most recent researches is removed. As a
result, the theory in this paper can be applied more generally.

1. Introduction

Neural networks have been rapidly developing into an impor-
tant technology for about 30 years, and they can be grouped
into two main types according to the networks’ structure,
that is, feed-forward neural networks (FNNs) and recurrent
neural networks (RNNs). RNNs are the neural networks with
feedback loops and by which the output of each neuron in
the monolayer would feedback to the input of other neurons.
RNNs are the dynamic systems that their states will vary with
time pasting by. The crucial foundation of the RNNs consists
in their dynamical properties, such as the global convergence,
asymptotic stability, and exponential stability. Therefore, the
analysis of such dynamical behaviors is the first and necessary
step for any practical design and application of RNNs, such as
recognition classification, adaptive control, and optimization.

In recent years, for different model individuals, consider-
able efforts have been devoted to the analysis on the stability
of RNNs without and with delay (see, e.g., [1–18] and the
references therein). In order to generalize those results, the
authors of [19] point out that most of the exponential stability
results are given under the condition that one discriminate

matrix defined by the RNNs, which is denoted by 𝑀(𝐿, Γ),
is positive. Here, 𝑀(𝐿, Γ) = 𝐿

−1

Γ − (Γ𝑊 + 𝑊
𝑇

Γ)/2, and
𝐿 = diag{𝑙

1

, 𝑙
2

, . . . , 𝑙
𝑁

} with each 𝑙
𝑖

> 0 being the Lipschitz
constant of 𝑔

𝑖

, 𝐺(𝑥) = (𝑔
1

(𝑥), 𝑔
2

(𝑥), . . . , 𝑔
𝑁

(𝑥))
𝑇, 𝑥 ∈ R𝑁

is the activation operator of the network, Γ is an arbitrary
positive define diagonal matrix, and 𝑊 is the weight matrix
of the network. When another discriminate matrix which
has the similar form as 𝑀(𝐿, Γ) is negative, the RNNs are
of exponential unstability. Further, they present the concept
of the special critical condition and some special critical
convergence analysis for two kinds of RNN models. In [20,
21], the general critical condition is defined. From which,
we can see that the critical condition is really an essential
gap between stable and unstable for the given RNNs; that
is, on one side of this gap, the RNNs are sure to be stable
and on the other side, the RNNs are certainly unstable.
And, when the RNNs fall into this gap, there exist stable
trajectories as well as unstable ones. Studying the dynamics
behaviors of RNNs under the critical condition is called
as the critical analysis. The goal of the critical analysis is
to find the least restrictions to assure the most stability
of RNNs, which is usually corresponding to the design of
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the connection matrices (which is contained in the critical
condition). To extend the application fields, especially to
loosen the design of the connection matrices, it is obvious
quite important to study the critical dynamics of RNNs. Since
studying the general critical dynamics is quite different, for
studying conveniently, the general critical analysis is often
replaced by the 𝑃-critical study.

On the other hand, in order to discover some more in-
depth characters other than the bound and monotonically
nondecreasing properties of the common used activation
operators, [22] provides two novel concepts: the uniformly
pseudoprojection antimonotone (UPPAM) operator and the
UPPAM RNNs. The UPPAM operator can formalize most of
the activation operators, and the UPPAM RNNs can be the
representation ofmost of the RNNs individuals too.Thus, the
UPPAM RNNs are called as the unified RNNs. Further, it is
guessed that only the study of the dynamics of the UPPAM
RNNs may achieve the outcome that we can discriminate the
similarity and redundant of the dynamics results among those
known RNNs individuals, and which is affirmed following in
[22, 23] for discrete-timeRNNs aswell as for continuous-time
RNNs, respectively.

For all that, we should notice one more important thing:
no matter for all kinds of the RNNs individuals or for
the UPPAM RNNs, almost all of the dynamics conclusions
(including those latest critical results) are based on a hypoth-
esis that the activation operators are diagonally nonlinear;
that is, the nonlinear activation operator 𝐺 : R𝑁 → R𝑁 is
defined by 𝐺(𝑥) = (𝑔

1

(𝑥
1

), 𝑔
2

(𝑥
2

), . . . , 𝑔
𝑁

(𝑥
𝑁

))
𝑇 (here each

𝑔
𝑖

is a one-dimensional nonlinear function). The cause of
the diagonally nonlinear requirement in dynamics analysis
is due to the fact that when considering the derivative of
a constructed energy function, an inner product is always
produced and it is hard to deal with it if one do not use
the diagonally nonlinear property. It is obvious that this
requirement for the activation operator is quite strict and goes
against the biological basis as well as applications.

In the current paper, we are devoted to remove the
diagonally nonlinear requirement of the activation operators
in dynamics analysis and answer the question that for the
unified recurrent neural networks (i.e., the UPPAM RNNs),
what dynamics behavior will happen under the 𝑃-critical
condition (which is defined as 𝑀(𝐿, Γ) + 𝑃 ≥ 0 with
𝑃 being an arbitrary nonnegative matrix). By using the
uniformly antimonotonicity as well as the pseudoprojection
property and by combining the Lyapunov functional method
and the LaSalle invariance principle, we get the global
convergence and asymptotic stability theorem and some
corollaries, which improve the recent dynamics results in
three aspects. Firstly, the theorem and corollaries obtained
in this paper are for the general RNNs, so they can be
applied directly to CNN, BSB, BCOp-type, and other com-
mon used specific models. Secondly, the 𝑃-critical analysis
is more general than the special critical analysis, let alone
those noncritical analyses.Thirdly, andmost importantly, the
requirement of the diagonal nonlinear for activation operator,
which is the restrictive condition for activation operator, is
removed.

2. Basic Definition

Static RNNs and local field RNNs typically represent two
fundamentalmodeling approaches in current neural network
research, which are, respectively, modeled by

𝜏
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, . . . , 𝑥
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)
𝑇 is the neural state vector, 𝑦 =

(𝑦
1

, 𝑦
2

, . . . , 𝑦
𝑁

)
𝑇 is the local field vector,𝑊 = (𝜔

𝑖𝑗

)
𝑁×𝑁

is the
synaptic weight matrix, 𝜏 is a positive constant, 𝑞 is a fixed
external bias vector, and 𝐺 : R𝑁 → R𝑁 is the nonlinear
activation operator.

We now recall some notion and notations (taking system
(1) as an example). A constant vector 𝑥

∗ is said to be an
equilibrium state of system (1), if 𝑥∗ is a fixed point of the
operator 𝑇(𝑥) := 𝐺(𝑊𝑥 + 𝑞), for all 𝑥 ∈ R𝑁. 𝑥∗ is said
to be stable if any trajectory of system (1) can stay within
a small neighborhood of 𝑥

∗ whenever the initial state 𝑥
0

is close to 𝑥
∗, and it is said to be attractive if there is a

neighborhood Δ(𝑥
∗

), called the attraction basin of 𝑥∗, such
that any trajectory of system (1) initialized from a state in
Δ(𝑥
∗

) will approach to 𝑥
∗ as time goes to infinity. 𝑥∗ is said

to be globally asymptotically stable on Δ(𝑥
∗

) if it is both stable
and attractive, with the attraction basin Δ(𝑥

∗

). System (1) is
said to be globally convergent on Θ if for every initial point
𝑥
0

∈ Θ, 𝑥(𝑡, 𝑥
0

) converges to an equilibrium state of system
(1) (the limit of 𝑥(𝑡, 𝑥

0

)may not be the same for different 𝑥
0

).
Here we give some definitions about the activation oper-

ator 𝐺 : R𝑁 → R𝑁 and the nonlinear operator 𝑇. Denote
the range of 𝐺 by R(𝐺).

Definition 1 (see [22]). The nonlinear activation operator 𝐺 :

R𝑁 → R𝑁 is said to be an 𝛼-uniformly antimonotonous
operator if there is a constant positive number 𝛼 such that

⟨𝐺 (𝑥) − 𝐺 (𝑦) , 𝑥 − 𝑦⟩ ≥ 𝛼
𝐺(𝑥) − 𝐺 (𝑦)
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, ∀𝑥, 𝑦 ∈ R
𝑁

.

(3)

In [22], it is shown that most of the common nonlinear
activation operators have the uniformly antimonotonous
properties, such as the nearest point projection operator,
the linear saturating operator, the signum operator, and the
pseudoprojection operator.

Definition 2 (see [22]). An operator 𝐺 is said to be a
pseudoprojection if there exists a positive define diagonal
matrix 𝐵 = diag{𝛽

1

, 𝛽
2

, . . . , 𝛽
𝑁

} such that 𝐵R(𝐺) ∈ R𝑁 and
𝐺(𝑥) = 𝐺𝐵𝐺(𝑥), for all 𝑥 ∈ R𝑁. Then 𝐺 is called as 𝐵-
projection.

Obviously, all the projection operators are pseudoprojec-
tion operators (here𝐵 = 𝐼, and 𝐼 refers to the identitymatrix),
and most of the concrete activation operators diversely
appeared in RNNs are pseudoprojection operators.
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In [22], when the operator 𝐺 has both the pseudoprojec-
tion and uniformly antimonotonous properties, it is called
as uniformly pseudoprojection, antimonotonous (UPPAM)
operator. Specially, we say 𝐺 is a (𝐵, 𝛼)-UPPAM whenever it
is a 𝐵-projection and 𝛼-uniformly antimonotonous operator.
It is worthwhile to note that the UPPAM operator provides
a very appropriate, unified framework within which most of
the known RNN models can be embedded and uniformly
studied [21–23].

The following definition of the nonlinear norm is similar
to that of the matrix norm.

Definition 3 (see [20]). Suppose that𝑇 : Ψ ⊆ R𝑁 → 𝑌 ⊆ R𝑁

is a nonlinear operator,𝐴 is a nonsingular𝑁×𝑁matrix, and
𝑥 ∈ Ψ is a given vector. One calls 𝐿 as the nonlinear norm if
it is defined as follows:

𝐿
‖⋅‖

(𝑇, 𝐴, 𝑥, Ψ) = sup
𝑥 ̸= 𝑥,𝑥∈Ψ

‖𝐴𝑇𝑥 − 𝐴𝑇𝑥‖

‖𝐴𝑥 − 𝐴𝑥‖
. (4)

Obviously, for any given matrix 𝐵, 𝐿
‖⋅‖

(𝐵, 𝐼, 𝑥, Ψ) =

‖𝐵‖. Additionally, for any constant 𝛽 > 0, one has
𝐿
‖⋅‖

(𝛽𝑇, 𝐴, 𝑥, Ψ) = 𝛽𝐿
‖⋅‖

(𝑇, 𝐴, 𝑥, Ψ).

Definition 4. One takes 𝑙 as the minimum Lipschitz constant
of operator 𝐹 : R𝑛 → R, which is defined as follows:

𝑙 = sup
𝑡,𝑠∈R𝑛,𝑡 ̸= 𝑠

|𝐹 (𝑡) − 𝐹 (𝑠)|

‖𝑡 − 𝑠‖
2

, ∀𝑥, 𝑦 ∈ R
𝑛

. (5)

Without loss of generality, throughout this paper, we
assume that each 𝑙 > 0. Here, let 𝑙

𝑖

be the minimum Lipschitz
constant of 𝑔

𝑖

and L = diag{𝑙
1

, 𝑙
2

, . . . , 𝑙
𝑁

}. The matrix L
is said to be the minimum Lipschitz matrix of operator 𝐺 =

(𝑔
1

, 𝑔
2

, . . . , 𝑔
𝑁

)
𝑇.

3. The Global Convergence Theorems of RNNs

In this section, the global convergence and asymptotic stabil-
ity theorem and corollaries for RNNs with UPPAMoperators
of both systems (1) and (2) will be established under the 𝑃-
critical condition. We consider the networks of form (1) first.

Suppose that 𝐺 : R𝑁 → R𝑁 is the nonlinear activation
operator. For any V ∈ R(𝐺), define 𝑇(V) = 𝐺(𝑊V + 𝑞) and
Fix(𝑇) as being the fixed point set of 𝑇(V). Then by Brouwer’s
fixed point theorem,𝑇has at least one fixed point V∗ ∈ Fix(𝑇).
As a result, the equilibrium state set of (1) is not empty.

Since for any 𝑁 × 𝑁 positive definite matrix 𝐴, there
exists an orthogonal matrix𝐾 (𝐾𝑇𝐾 = 𝐼) such that𝐾𝑇𝐴𝐾 =

diag{𝜆
1

, 𝜆
2

, . . . , 𝜆
𝑁

} (here 𝜆
𝑖

> 0 is the eigenvalue of 𝐴), and
if we define 𝐵 = 𝐾 diag{𝜆1/2

1

, 𝜆
1/2

2

, . . . , 𝜆
1/2

𝑁

}𝐾
𝑇, then it is clear

that 𝐵 = 𝐵
𝑇, 𝐵2 = 𝐴 and 𝐵 is invertible. Such a matrix 𝐵 is

denoted by Deco(𝐴); that is, 𝐵 = Deco(𝐴).
Following is the global convergence and asymptotic

stability theorem of system (1). Suppose that Θ = R(𝐺) is a
bounded, closed, and convex subset of R𝑁.

Theorem 5. Let 𝐺 : R𝑁 → Θ be a (𝐵, 𝛼)-UPPAM operator,
and let each 𝑔

𝑖

be monotonically increasing and continuous. If

there is a nonnegative definite matrix 𝑃, such that 𝑀(L, 𝐼) +

𝑃 ≥ 0, and for a V∗ ∈ Fix(𝑇), 𝐿
‖⋅‖

2

(𝑇, 𝑄, V∗, Θ) ≤ 1

where 𝑄 = Deco (L−1 + 𝑃), then RNN system (1) is globally
convergent on Θ when Fix(𝑇) is disconnected. Furthermore,
when V∗ is the unique equilibrium point of (1), then V∗ is
globally asymptotically stable on Θ.

Proof. Denote the trajectory starting from 𝑥
0

∈ Θ by 𝑥(𝑡), Let
𝑦(𝑡) = 𝑊𝑥(𝑡) + 𝑞, 𝑧(𝑡) = 𝐺(𝑦(𝑡)) and 𝑢(𝑡) = 𝑧(𝑡) − 𝑥(𝑡). It is
obvious that 𝑢(𝑡) = 𝜏𝑑𝑥(𝑡)/𝑑𝑡.

Define

𝑉
1
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𝑇
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2
)𝑥 (𝑡) ,

𝑉
3
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𝑇

(𝑡) 𝑞,

𝑉
4

(𝑥 (𝑡)) = 𝜏

𝑁

∑

𝑖=1

∫

𝑦

𝑖
(𝑡)

(𝑦0)
𝑖

𝑔
𝑖

(𝑠) 𝑑𝑠,

𝑉
5

(𝑥 (𝑡)) =
1

2
𝜏 {−(𝑦(𝑡) − 𝑥(𝑡))

𝑇

(𝑦 (𝑡) − 𝑥 (𝑡))

+ 𝑦(𝑡)
𝑇

𝑦 (𝑡) + 𝑥(𝑡)
𝑇

(𝐼 −L
−1

) 𝑥 (𝑡) } ,

𝑉
6

(𝑥 (𝑡)) = 𝜏𝑥
𝑇

(𝑡) (L
−1

+ 𝑃) 𝑥 (𝑡) − 2𝑥
𝑇

(𝑡) (L
−1

+ 𝑃) V∗.
(6)

It is easy to get their derivatives, that is,

�̇�
1

(𝑥 (𝑡)) = − 2 ⟨(𝑊 + 𝑊
𝑇

) 𝑥 (𝑡) , 𝑢 (𝑡)⟩ ,

�̇�
2

(𝑥 (𝑡)) = ⟨(L
−1

+ 𝐵) 𝑥 (𝑡) , 𝑢 (𝑡)⟩ ,

�̇�
3

(𝑥 (𝑡)) = − 2 ⟨𝑞, 𝑢 (𝑡)⟩ ,

�̇�
4

(𝑥 (𝑡)) = ⟨𝑧 (𝑡) ,𝑊𝑢 (𝑡)⟩ ,

�̇�
5

(𝑥 (𝑡)) = − ⟨𝑥 (𝑡) , (L
−1

− 𝑊)𝑢 (𝑡)⟩ + ⟨𝑦 (𝑡) , 𝑢 (𝑡)⟩ ,

�̇�
6

(𝑥 (𝑡)) = 2 ⟨(L
−1

+ 𝑃) 𝑥 (𝑡) , 𝑢 (𝑡)⟩

− 2 ⟨(L
−1

+ 𝑃) V∗, 𝑢 (𝑡)⟩ .

(7)

Define

𝐸 (𝑥 (𝑡)) =

6

∑

𝑖=1

𝑉
𝑖

(𝑥 (𝑡)) (8)

as the Lyapunov energy function, and a direct calculation is
that

𝑑𝐸 (𝑥 (𝑡))

𝑑𝑡

= − 2 ⟨(𝑊 + 𝑊
𝑇

) 𝑥 (𝑡) , 𝑢 (𝑡)⟩ + ⟨(L
−1

+ 𝐵) 𝑥 (𝑡) , 𝑢 (𝑡)⟩
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− ⟨𝑞, 𝑢 (𝑡)⟩ + ⟨𝑧 (𝑡) ,𝑊𝑢 (𝑡)⟩ − ⟨𝑥 (𝑡) , (L
−1

− 𝑊)𝑢 (𝑡)⟩

+ ⟨𝑦 (𝑡) , 𝑢 (𝑡)⟩ + 2 ⟨(L
−1

+ 𝑃) 𝑥 (𝑡) , 𝑢 (𝑡)⟩

− 2 ⟨(L
−1

+ 𝑃) V∗, 𝑢 (𝑡)⟩

= ⟨((L
−1

+ 𝐵) − 2 (𝑊 + 𝑊
𝑇

)) 𝑥 (𝑡) , 𝑢 (𝑡)⟩ − 2 ⟨𝑞, 𝑢 (𝑡)⟩

+ ⟨L
−1

𝑧 (𝑡) , 𝑢 (𝑡)⟩ − ⟨𝑧 (𝑡) , (L
−1

− 𝑊)𝑢 (𝑡)⟩

− ⟨𝑥 (𝑡) , (L
−1

− 𝑊)𝑢 (𝑡)⟩ + ⟨𝑦 (𝑡) , 𝑢 (𝑡)⟩

+ 2 ⟨(L
−1

+ 𝑃) 𝑥 (𝑡) , 𝑢 (𝑡)⟩ − 2 ⟨(L
−1

+ 𝑃) V∗, 𝑢 (𝑡)⟩

= − 2⟨𝑦 (𝑡) , 𝑢 (𝑡)⟩ + ⟨𝐵𝑥 (𝑡) , 𝑢 (𝑡)⟩ + ⟨L
−1

𝑥 (𝑡) , 𝑢 (𝑡)⟩

− 2⟨𝑥 (𝑡) ,𝑊𝑢 (𝑡)⟩ + ⟨L
−1

𝑧 (𝑡) , 𝑢 (𝑡)⟩

− ⟨𝑧 (𝑡) , (L
−1

− 𝑊)𝑢 (𝑡)⟩ − ⟨𝑥 (𝑡) , (L
−1

− 𝑊)𝑢 (𝑡)⟩

+ ⟨𝑦 (𝑡) , 𝑢 (𝑡)⟩ + 2 ⟨(L
−1

+ 𝑃) 𝑥 (𝑡) , 𝑢 (𝑡)⟩

− 2 ⟨(L
−1

+ 𝑃) V∗, 𝑢 (𝑡)⟩

= − ⟨𝑦 (𝑡) − 𝐵𝑥 (𝑡) , 𝑢 (𝑡)⟩ − ⟨L
−1

𝑥 (𝑡) , 𝑢 (𝑡)⟩

+ ⟨𝑥 (𝑡) − 𝑧 (𝑡) , (L
−1

− 𝑊)𝑢 (𝑡)⟩ + ⟨L
−1

𝑧 (𝑡) , 𝑢 (𝑡)⟩

+ 2 ⟨(L
−1

+ 𝑃) 𝑥 (𝑡) , 𝑢 (𝑡)⟩ − 2 ⟨(L
−1

+ 𝑃) V∗, 𝑢 (𝑡)⟩

= − ⟨𝑦 (𝑡) − 𝐵𝑥 (𝑡) , 𝑢 (𝑡)⟩ + ⟨𝑥 (𝑡) − 𝑧 (𝑡) ,𝑊 (𝑥 (𝑡) − 𝑧 (𝑡))⟩

+ 2 ⟨(L
−1

+ 𝑃) 𝑥 (𝑡) , 𝑢 (𝑡)⟩ − 2 ⟨(L
−1

+ 𝑃) V∗, 𝑢 (𝑡)⟩

= −⟨𝑦 (𝑡) − 𝐵𝑥 (𝑡) , 𝑢 (𝑡)⟩

+ ⟨𝑧 (𝑡) − 𝑥 (𝑡) , (
𝑊 + 𝑊

𝑇

2
) (𝑧 (𝑡) − 𝑥 (𝑡))⟩

+ 2 ⟨(L
−1

+ 𝑃) 𝑥 (𝑡) , 𝑢 (𝑡)⟩ − 2 ⟨(L
−1

+ 𝑃) V∗, 𝑢 (𝑡)⟩

= − ⟨𝑦 (𝑡) − 𝐵𝑥 (𝑡) , 𝑢 (𝑡)⟩

− 𝑢
𝑇

(𝑡) ((L
−1

+ 𝑃) −
𝑊 + 𝑊

𝑇

2
)𝑢 (𝑡)

+ 𝑢
𝑇

(𝑡) (L
−1

+ 𝑃) 𝑢 (𝑡) + 2 ⟨(L
−1

+ 𝑃) 𝑥 (𝑡) , 𝑢 (𝑡)⟩

− 2 ⟨(L
−1

+ 𝑃) V∗, 𝑢 (𝑡)⟩ .

(9)

SinceL−1 + 𝑃 − (𝑊 + 𝑊
𝑇

)/2 = 𝑀(L, 𝐼) + 𝑃 ≥ 0, then

−𝑢
𝑇

(𝑡) ((L
−1

+ 𝑃) −
𝑊 + 𝑊

𝑇

2
)𝑢 (𝑡) ≤ 0. (10)

Thus

𝑑𝐸 (𝑥 (𝑡))

𝑑𝑡

≤ − ⟨(𝑦 (𝑡) − 𝐵𝑥 (𝑡)) , 𝑢 (𝑡)⟩ + 𝑢
𝑇

(𝑡) (L
−1

+ 𝑃) 𝑢 (𝑡)

+ 2 ⟨(L
−1

+ 𝑃) 𝑥 (𝑡) , 𝑢 (𝑡)⟩ − 2 ⟨(L
−1

+ 𝑃) V∗, 𝑢 (𝑡)⟩ .

(11)

Let 𝑄 = Deco(L−1 + 𝑃), then we have

𝑢
𝑇

(𝑡) (L
−1

+ 𝑃) 𝑢 (𝑡) + 2⟨(L
−1

+ 𝑃) 𝑥 (𝑡) , 𝑢 (𝑡)⟩

− 2 ⟨(L
−1

+ 𝑃) V∗, 𝑢 (𝑡)⟩

= ⟨𝑢 (𝑡) , 𝑄
2

𝑢 (𝑡)⟩ + 2 ⟨𝑄
2

𝑥 (𝑡) , 𝑢 (𝑡)⟩ − 2 ⟨𝑄
2V∗, 𝑢 (𝑡)⟩

= ⟨𝑢 (𝑡) + 2𝑥 (𝑡) − 2V∗, 𝑄2𝑢 (𝑡)⟩

= ⟨𝑧 (𝑡) + 𝑥 (𝑡) − 2V∗, 𝑄2𝑢 (𝑡)⟩

= ⟨ (𝑧 (𝑡) − V∗) + (𝑥 (𝑡) − V∗) ,

𝑄
2

((𝑧 (𝑡) − V∗) − (𝑥 (𝑡) − V∗))⟩

= ⟨𝑧 (𝑡) − V∗, 𝑄2 (𝑧 (𝑡) − V∗)⟩

− ⟨𝑥 (𝑡) − V∗, 𝑄2 (𝑥 (𝑡) − V∗)⟩ .

(12)

From V∗ ∈ Fix(𝑇), we know V∗ = 𝐺(𝑊V∗ + 𝑞). And then (12)
is equal to

𝑢
𝑇

(𝑡) (L
−1

+ 𝑃) 𝑢 (𝑡) + 2 ⟨(L
−1

+ 𝑃) 𝑥 (𝑡) , 𝑢 (𝑡)⟩

− 2 ⟨(L
−1

+ 𝑃) V∗, 𝑢 (𝑡)⟩

= ⟨𝑧 (𝑡) − 𝐺 (𝑊V∗ + 𝑞) , 𝑄
2

(𝑧 (𝑡) − 𝐺 (𝑊V∗ + 𝑞))⟩

− ⟨𝑥 (𝑡) − V∗, 𝑄2 (𝑥 (𝑡) − V∗)⟩

= ⟨𝐺 (𝑊𝑥 (𝑡) + 𝑞) − 𝐺 (𝑊V∗ + 𝑞) ,

𝑄
2

(𝐺 (𝑊𝑥 (𝑡) + 𝑞) − 𝐺 (𝑊V∗ + 𝑞))⟩

− ⟨𝑥 (𝑡) − V∗, 𝑄2 (𝑥 (𝑡) − V∗)⟩

= ⟨𝑄 (𝐺 (𝑊𝑥 (𝑡) + 𝑞) − 𝐺 (𝑊V∗ + 𝑞)) ,

𝑄 (𝐺 (𝑊𝑥 (𝑡) + 𝑞) − 𝐺 (𝑊V∗ + 𝑞))⟩

− ⟨𝑄 (𝑥 (𝑡) − V∗) , 𝑄 (𝑥 (𝑡) − V∗)⟩

=
𝑄 (𝐺 (𝑊𝑥 (𝑡) + 𝑞) − 𝐺 (𝑊V∗ + 𝑞))



2

−
𝑄 (𝑥 (𝑡) − V∗)

2

.

(13)
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Furthermore, on noting that 𝐿
‖⋅‖

2

(𝑇, 𝑄, V∗, Θ) ≤ 1, one can
get that

𝐿
‖⋅‖

2

(𝑇, 𝑄, V∗, Θ)

= sup
𝑥 ̸= V∗ ,𝑥∈Θ

𝑄𝑇𝑥 − 𝑄𝑇V∗2
‖𝑄𝑥 − 𝑄V∗‖

2

= sup
𝑥 ̸= V∗ ,𝑥∈Θ

𝑄𝐺(𝑊𝑥 + 𝑞) − 𝑄𝐺(𝑊V∗ + 𝑞)
2

‖𝑄𝑥 − 𝑄V∗‖
2

≤ 1.

(14)

This, combined with (11) and (13), implies that

𝑢
𝑇

(𝑡) (L
−1

+ 𝑃) 𝑢 (𝑡) + 2 ⟨(L
−1

+ 𝑃) 𝑥 (𝑡) , 𝑢 (𝑡)⟩

− 2 ⟨(L
−1

+ 𝑃) V∗, 𝑢 (𝑡)⟩ ≤ 0,

(15)

𝑑𝐸 (𝑥 (𝑡))

𝑑𝑡
≤ ⟨𝑦 (𝑡) − 𝐵𝑥 (𝑡) , 𝑢 (𝑡)⟩ . (16)

In addition, since 𝑥(𝑡) ∈ Θ = R(𝐺) and 𝐺 is a (𝐵, 𝛼)-UPPAM
operator, then 𝑥(𝑡) = 𝐺𝐵(𝑥(𝑡)) and

⟨𝑦 (𝑡) − 𝐵𝑥 (𝑡) , 𝑢 (𝑡)⟩

= ⟨𝑦 (𝑡) − 𝐵𝑥 (𝑡) , 𝑧 (𝑡) − 𝑥 (𝑡)⟩

= ⟨𝑦 (𝑡) − 𝐵𝑥 (𝑡) , 𝐺 (𝑦 (𝑡)) − 𝑥 (𝑡)⟩

= ⟨𝑦 (𝑡) − 𝐵𝑥 (𝑡) , 𝐺 (𝑦 (𝑡)) − 𝐺 (𝐵𝑥 (𝑡))⟩

≥ 𝛼
𝐺 (𝑦 (𝑡)) − 𝐺 (𝐵𝑥 (𝑡))



2

.

(17)

Combining with (16), we have

𝑑𝐸 (𝑥 (𝑡))

𝑑𝑡
≤ 0. (18)

The equal sign holds if and only if 𝐺(𝑦(𝑡)) = 𝐺(𝐵𝑥(𝑡)); that
is, 𝑧(𝑡) − 𝑥(𝑡) = 0.

Furthermore, since 𝑥(𝑡) ∈ Θ is bounded and Fix(𝑇) is
disconnected, then by LaSalle invariance principle in [24],
we know that RNN model (1) is globally convergent on Θ.
And when Fix(𝑇) = {V∗}, then it is easy to deduce that V∗ is
both attractive and stable on Θ since Θ is bounded; that is,
V∗ is globally asymptotically stable on Θ. Thus, Theorem 5 is
proved.

Theorem 5 gives the global convergence and asymptotic
stability result of UPPAM RNNs without diagonal nonlinear
requirement under the 𝑃-critical condition, while it is not
quite easy to judge the condition that 𝐿

‖⋅‖

2

(𝑇, 𝑄, V∗, Θ) ≤ 1.
To improve it, we present the following corollary.

Corollary 6. Assume that 𝐺 : R𝑁 → Θ is a (𝐵, 𝛼)-
UPPAM operator with each 𝑔

𝑖

being monotonically increasing
and continuous. If there exists a nonnegative diagonal matrix
𝑃, such that 𝑀(L, 𝐼) + 𝑃 ≥ 0 and ‖𝑄‖

2

⋅ ‖𝑊𝑄
−1

‖
2

≤ 𝛼

(here 𝑄 = Deco (L−1 + 𝑃)), then RNN model (1) is globally

convergent onΘ when Fix(𝑇) is disconnected. Moreover, when
V∗ is the unique equilibrium point of (1), then V∗ is globally
asymptotically stable on Θ.

Proof. Assume that V∗ ∈ Fix(𝑇); then
𝑄𝑇𝑥 − 𝑄𝑇V∗2 =

𝑄𝐺(𝑊𝑥 + 𝑞) − 𝑄𝐺 (𝑊V∗ + 𝑞)
2

=
𝑄 (𝐺(𝑊𝑥 + 𝑞) − 𝐺(𝑊V∗ + 𝑞))

2

≤ ‖𝑄‖
2

⋅
𝐺 (𝑊𝑥 + 𝑞) − 𝐺 (𝑊V∗ + 𝑞)

2
.

(19)

Since𝐺 is𝛼-uniformly antimonotonous, we know that for any
𝑥, 𝑦 ∈ R𝑁,

⟨𝑥 − 𝑦, 𝐺 (𝑥) − 𝐺 (𝑦)⟩ =
𝑥 − 𝑦

 ⋅
𝐺 (𝑥) − 𝐺 (𝑦)

 ⋅ cos 𝜃

≥ 𝛼 ⋅ ‖ 𝐺 (𝑥) − 𝐺 (𝑦) ‖
2

.

(20)

So it is clear that

𝛼 ⋅
𝐺 (𝑥) − 𝐺 (𝑦)

 ≤
𝑥 − 𝑦

 , ∀𝑥 ̸= 𝑦. (21)

Then, we have

𝐺(𝑊𝑥 + 𝑞) − 𝐺(𝑊V∗ + 𝑞)
2

≤
1

𝛼

(𝑊𝑥 + 𝑞) − (𝑊V∗ + 𝑞)
2

=
1

𝛼

𝑊 (𝑥 − V∗)2.

(22)

And (19) can conclude that

𝑄𝑇𝑥 − 𝑄𝑇V∗2 ≤
1

𝛼
‖𝑄‖
2

⋅
𝑊(𝑥 − V∗)2

=
1

𝛼
‖𝑄‖
2

⋅

𝑊𝑄
−1

𝑄 (𝑥 − V∗)
2

≤
1

𝛼
‖𝑄‖
2

⋅

𝑊𝑄
−1

2
⋅
𝑄 (𝑥 − V∗)2.

(23)

Clearly, when ‖𝑄‖
2

⋅ ‖𝑊𝑄
−1

‖
2

≤ 𝛼, then it can be deduced
that

𝐿
‖⋅‖

2

(𝑇, 𝑄, V∗, Θ) = sup
𝑥 ̸= V∗ ,𝑥∈Θ

𝑄𝑇𝑥 − 𝑄𝑇V∗2
‖𝑄𝑥 − 𝑄V∗‖

2

≤ 1. (24)

Corollary 6 is then proved fromTheorem 5.

Correspondingly, we can deduce the critical global con-
vergence and asymptotical stability conclusions for RNN
system (2).

Corollary 7. Assume that 𝐺 : R𝑁 → Θ is a (𝐵, 𝛼)-
UPPAM operator with each 𝑔

𝑖

being monotonically increasing
and continuous. If there exists a nonnegative diagonal matrix𝑃
such that𝑀(L, 𝐼) + 𝑃 ≥ 0 and one of the following conditions
holds, then RNNmodel (2) is globally convergent on (𝑊Θ+ 𝑞)

when Fix(𝑇) is disconnected. Moreover, when 𝑦
∗ is the unique

equilibrium point of (2), then 𝑦
∗ is globally asymptotically

stable on (𝑊Θ + 𝑞).
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(i) For a V∗ ∈ Fix(𝑇), the nonlinear norm
𝐿
‖⋅‖

2

(𝑇, 𝑄, V∗, Θ) ≤ 1, where 𝑄 = Deco (L−1 + 𝑃);

(ii) For the weight matrix 𝑊, ‖𝑄‖
2

⋅ ‖𝑊𝑄
−1

‖
2

≤ 𝛼, where
𝑄 = Deco (L−1 + 𝑃).

Proof. For any trajectory 𝑦(𝑡) of (2) starting from 𝑦
0

∈

𝑊(Θ) + 𝑞, let 𝑦
0

= 𝑊𝑥
0

+ 𝑞 with 𝑥
0

∈ Θ and let 𝑥(𝑡) be
the solution of (1) with initial value 𝑥(0) = 𝑥

0

; then by the
uniqueness of solution of differential equations, it is easy to
verify that 𝑦(𝑡) ≡ 𝑊𝑥(𝑡) + 𝑞 and there exists an equilibrium
state of (1), denoted by V∗, such that 𝑦∗ = 𝑊V∗ + 𝑞. Thus, by
[25], the convergence of𝑦(𝑡) to an equilibrium state of (2) can
be shown by studying the asymptotic behavior of 𝑥(𝑡). Then,
the conclusion of Corollary 7 readily follows fromTheorem 5
and Corollary 6.

Remark 8. In this section, we have presented the 𝑃-critical
convergence as well as the stability results for the uni-
formly pseudoprojection antimonotone RNNs. In detail,
we obtain the global convergence and the asymptotic sta-
bility for the static UPPAM RNNs under the conditions
that either the nonlinear norm defined by the networks
is less than 1, or the matrix norms given by the net-
works satisfy one bounded requirement. And the corre-
sponding results for the local field UPPAM RNNs are
discussed.

It should be noticed that in the achieved theorem as well
as the two corollaries here, the diagonally nonlinear require-
ment of the activation operators has been removed directly,
which is a basic hypothesis in nearly all of the dynamics anal-
ysis obtained before. Thus, we improve most of the existing
results for RNNs, either for those ones under the noncritical
conditions or for those under the critical conditions (see,
e.g., [6, 13, 19, 21, 25–28] and the references therein). In
addition of this, we know from [20] that the𝑃-critical analysis
of RNNs can give the basic argument between stability
and unstability of RNNs, so the discussion of the 𝑃-critical
dynamics analysis for RNNs without diagonally nonlinear
requirement is quite meaningful both in theory and in appli-
cations. Further, since the UPPAMRNNs can formalize most
of the existing RNNs individuals, thus the analysis results
of dynamics behaviors for UPPAM RNNs may achieve the
unified conclusions for RNNs, and which can discriminate
the similarity and redundant of the dynamics results among
the known RNNs individuals. In particular, the achieved
results here can be applied directly to many RNNs models
and can improve deeply the main results of those models,
for example, the Cellular Neural Networks (CNNs) [7–11],
the Brain-State-in-Box Neural Networks (BSB NNs) [29, 30],
the BCOp-typeRNNs [31], and other commonly used specific
individuals.

4. Illustrative Examples

In this section, we provide several illustrative examples to
demonstrate the validity of the convergence and stability
results formulated in the previous section.

Example 1. Consider the following RNN:

𝑑𝑥
1

(𝑡)

𝑑𝑡
= −𝑥
1

(𝑡) + 𝑔
1

(0.5𝑥
1

(𝑡) + 1.5𝑥
2

(𝑡) + 3) ,

𝑑𝑥
2

(𝑡)

𝑑𝑡
= −𝑥
2

(𝑡)

+ 𝑔
2

(−0.5𝑥
1

(𝑡) + 0.5𝑥
2

(𝑡) + 1.5𝑥
3

(𝑡) + 4) ,

𝑑𝑥
3

(𝑡)

𝑑𝑡
= −𝑥
3

(𝑡)

+ 𝑔
3

(−0.5𝑥
2

(𝑡) + 0.5𝑥
3

(𝑡) + 1.5𝑥
4

(𝑡) − 4) ,

𝑑𝑥
4

(𝑡)

𝑑𝑡
= −𝑥
4

(𝑡) + 𝑔
4

(−0.5𝑥
3

(𝑡) + 0.5𝑥
4

(𝑡)) ,

(25)

where each 𝑔
𝑖

(𝑠) = {
1, 𝑠>1

𝑠, −1<𝑠≤1

−1, 𝑠≤−1

(𝑖 = 1, 2, 3, 4).

In this example, it is easy to find that the activation
operator 𝐺 : R4 → Θ = [−1, 1]

4 and that the minimum
Lipschitz constant of 𝑔

𝑖

= 1, (𝑖 = 1, 2, 3, 4). So we get that
L = 𝐼. In addition, the unique equilibrium state is 𝑥

∗

=

(1, 1, −1, 1)
𝑇.

For any positive diagonal matrix Γ, it is easy to verify
that 𝑀(L, Γ) = Γ − (Γ𝑊 + 𝑊

𝑇

Γ)/2 is not positive and,
further, not nonnegative. That is, all of the noncritical and
critical conclusions in the literature (see, e.g., [19, 27, 32])
cannot be used here. But Theorem 5 can be applied to
this example. Actually, the projection operator 𝐺 is a (𝐼, 1)-
UPPAM operator. Letting 𝑃 = diag{3, 3, 3, 3}, we have

𝑀(L, 𝐼) + 𝑃 = (

0.5 1

1 0.5 1

1 0.5 1

1 0.5

) + 𝑃

= (

3.5 1

1 3.5 1

1 3.5 1

1 3.5

) .

(26)

It is obvious that 𝑀(L, 𝐼) + 𝑃 > 0 and 𝑄 = Deco(L−1 +
𝑃) = diag{2, 2, 2, 2}. Letting 𝑇(V) = 𝐺(𝑊V + 𝑞) for any V ∈ Θ,
one can get that Fix(𝑇) = {(1, 1, −1, 1)

𝑇

}. For any V∗ ∈ Fix(𝑇),
we want to show that

𝐿
‖⋅‖

2

(𝑇, 𝑄, V∗, Θ) = sup
𝑥 ̸= V∗ ,𝑥∈Θ

𝑄𝐺 (𝑊𝑥 + 𝑞) − 𝑄V∗2
‖𝑄𝑥 − 𝑄V∗‖

2

≤ 1.

(27)

On noting that for any 𝑥 = (𝑥
1

, 𝑥
2

, 𝑋
3

, 𝑥
4

)
𝑇

∈ Θ,

𝑊𝑥 + 𝑞 = (

0.5𝑥
1

+ 1.5𝑥
2

+ 3

−0.5𝑥
1

+ 0.5𝑥
2

+ 1.5𝑥
3

+ 4

−0.5𝑥
2

+ 0.5𝑥
3

+ 1.5𝑥
4

− 4

−0.5𝑥
3

+ 0.5𝑥
4

) = 𝑥. (28)
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And −1 ≤ 𝑥
𝑖

≤ 1 (𝑖 = 1, 2, 3, 4), so 0.5𝑥
1

+ 1.5𝑥
2

+ 3 ≥ 1,
−0.5𝑥

1

+0.5𝑥
2

+1.5𝑥
3

+4 ≥ 1, −0.5𝑥
2

+0.5𝑥
3

+1.5𝑥
4

−4 ≤ −1;
then (𝐺(𝑥))

1

= (𝐺(𝑥))
2

= 1, (𝐺(𝑥))
3

= −1. Then,

𝑄𝐺(𝑊𝑥 + 𝑞) − 𝑄V∗
2

2

=
𝑄(𝑥 − V∗)

2

2

=
𝑞4(𝑥4 − V∗

4

)


2

= 4(−0.5𝑥
3

+ 0.5𝑥
4

− 1)
2

.

(29)

On the other hand,

𝑄𝑥 − 𝑄V∗
2

2

=

4

∑

𝑖=1

(𝑞
𝑖

(𝑥
𝑖

− V∗
𝑖

))
2

≥ 4 ((𝑥
3

+ 1)
2

+ (𝑥
4

− 1)
2

) .

(30)

From (29) and (30), it shows that

𝑄𝑥 − 𝑄V∗
2

2

−
𝑄𝐺 (𝑊𝑥 + 𝑞) − 𝑄V∗

2

2

≥ 4 ((𝑥
3

+ 1)
2

+ (𝑥
4

− 1)
2

− (−0.5𝑥
3

+ 0.5𝑥
4

− 1)
2

)

= 4𝑥
2

3

+ 8𝑥
3

+ 4 + 4𝑥
2

4

− 8𝑥
4

+ 4 − 𝑥
2

3

− 𝑥
2

4

− 4

+ 2𝑥
3

𝑥
4

− 4𝑥
3

+ 4𝑥
4

= (𝑥
3

+ 𝑥
4

)
2

+ 2𝑥
2

3

+ 2𝑥
2

4

+ 4𝑥
3

− 4𝑥
4

+ 4

= (𝑥
3

+ 𝑥
4

)
2

+ 2(𝑥
3

+ 1)
2

+ 2(𝑥
4

− 1)
2

≥ 0.

(31)

So the inequality

𝑄𝐺(𝑊𝑥 + 𝑞) − 𝑄V∗2
‖𝑄𝑥 − 𝑄V∗‖

2

≤ 1 (32)

always holds.
According to Theorem 5, system (25) is globally asymp-

totically stable on Θ. The following Figure 1 depicts the time
responses of state variables of the system with random initial
point starting from Θ, which confirm that the proposed
condition in Theorem 5 ensures the globally asymptotical
stability of the RNNs.

Example 2. Consider the following RNN of system (2):

𝑑𝑦

𝑑𝑡
= −𝑦 + 𝑊𝐺 (𝑦) + 𝑞, (33)

where 𝑦 ∈ R3, 𝐺(𝑦) = argmin
𝑧∈Θ

‖𝑦 − 𝑧‖
2

and Θ = {V ∈ R3 :

‖V‖
2

≤ 1}. The weight matrix and the external bias vector are
defined as follows:

𝑊 = (

0.7 −0.3 0.1

0.1 0.8 −0.2

0.1 −0.2 0.5

) , 𝑞 = (

−0.2

−0.3

0.3

) . (34)
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Figure 1: Transient behaviors of RNN in system (25) with random
initial point 𝑥

0

∈ [−1, 1]
4.

Obviously, this example is established on a general pro-
jection operator, and all the diagonally nonlinear conclusions
in the literature [20, 28, 32] cannot be used here. But
the Corollary 7 established in Section 3 can be applied to
Example 2. Actually, in this example 𝐵 = 𝐼 and 𝛼 = 1. And
it could be proofed that L = 𝐼, that is because when Θ is
the unit sphere in R3 and 𝐺 = (𝑔

1

, 𝑔
2

, 𝑔
3

)
𝑇, 𝑔
𝑖

is defined as
follows:

𝑔
𝑖

(𝑦) =

{{

{{

{

𝑦
𝑖

,
𝑦

2
≤ 1

𝑦
𝑖

𝑦
2

,
𝑦

2
> 1,

𝑦 ∈ Θ, 𝑖 = 1, 2, 3. (35)

Let V ̸= 𝑢 be two arbitrary points inR3, we know that |𝑔
1

(V) −
𝑔
1

(𝑢)| ≤ ‖𝐺(V) − 𝐺(𝑢)‖
2

. In addition, ‖𝐺(V) − 𝐺(𝑢)‖
2

≤

𝛼‖V − 𝑢‖
2

= ‖V − 𝑢‖
2

(here 𝛼 = 1), so |𝑔
1

(V) − 𝑔
1

(𝑢)| ≤

‖V − 𝑢‖
2

, and then 𝑙
1

≤ 1. On the other hand, taking V =

(𝛿, 1, 0)
𝑇, 𝑢 = (−𝛿, 1, 0)

𝑇, then |𝑔
1

(V) − 𝑔
1

(𝑢)| = (1 +

𝛿
2

)
−1/2

(‖V − 𝑢‖
2

). For ∀𝜀 > 0, ∃0 < 𝛿 < √(1 + 𝜀)
−2

− 1,
∋ |𝑔
1

(V) − 𝑔
1

(𝑢)| > (1 − 𝜀)(‖ V − 𝑢‖
2

). So

𝑙
1

= sup
V,𝑢∈R3,V ̸= 𝑢

𝑔1 (V) − 𝑔
1

(𝑢)


‖V − 𝑢‖
2

= 1. (36)

And then we getL = 𝐼.
Taking 𝑃 = diag{0, 0.44, 0}, then 𝑀(L, 𝐼) + 𝑃 ≥ 0 and

𝑄 = Deco(L−1 + 𝑃) = diag{1, 1.2, 1}. It is easy to figure out
that ‖𝑄‖

2

⋅ ‖𝑊𝑄
−1

‖
2

≈ 0.9882 < 1. According to Corollary 7,
system (33) is globally convergent on 𝑊(Θ) + 𝑞. Figure 2
depicts the time responses of state variables of system (33)
with random initial point starting from𝑊(Θ) + 𝑞.

Example 3. Consider the following RNN of system (1):
𝑑𝑥

𝑑𝑡
= −𝑥 + 𝐺 (𝑊𝑋 + 𝑞) , (37)
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Figure 2: Transient behaviors of RNN in system (33) with random initial point 𝑥
0

∈ 𝑊(Θ) + 𝑞.

where 𝑥 ∈ R3, 𝐺(𝑥) = argmin
𝑧∈Θ

‖𝑥 − 0.8𝑧‖
2

and Θ = {V ∈

R3 : ‖V‖
2

≤ 1}.Theweightmatrix and the external bias vector
is defined as follows:

𝑊 = (

0.4 −0.3 0.2

0.2 0.5 −0.2

−0.1 0.2 0.6

) , 𝑞 = (

0.2

−0.5

0.3

) . (38)

Like Example 2, all the diagonally nonlinear conclusions
in the literature [20, 28, 32] cannot be used here. But
this example can be proved to be globally convergent by
Corollary 6. Here, we find that 0.8𝐺 is equal to the activation
operator in Example 2. Furthermore, it is easy to get that
𝐺(𝑥) = 𝐺(0.8𝐼)𝐺(𝑥) and ⟨0.8𝐺(𝑥) − 0.8𝐺(𝑦), 𝑥 − 𝑦⟩ ≥

‖0.8𝐺(𝑥) − 0.8𝐺(𝑦)‖
2

2

which equals ⟨𝐺(𝑥) − 𝐺(𝑦), 𝑥 − 𝑦⟩ ≥

0.8‖𝐺(𝑥) − 𝐺(𝑦)‖
2

2

with each 𝑥, 𝑦 ∈ Θ. So the activation
operator 𝐺 here is a (0.8𝐼, 0.8)-UPPAM. And just like the
proof in Example 2, we can getL = 1.25𝐼.

Taking 𝑃 = diag{0.2, 0.41, 0.41}, then 𝑀(L, 𝐼) + 𝑃 ≥ 0

and𝑄 = Deco(L−1 +𝑃) = diag{1, 1.1, 1.1}. It is easy to figure
out that ‖𝑄‖

2

⋅ ‖𝑊𝑄
−1

‖
2

≈ 0.6782 < 0.8 = 𝛼. According to
Corollary 6, system (37) is globally convergent onΘ. Figure 3
depicts the time responses of state variables of system (37)
with random initial point starting from Θ.

5. Conclusion

Two basic dynamics behaviors, global convergence and
asymptotical stability of both static and local field RNNs
with UPPAM operators, have been studied under the 𝑃-
critical condition. It has been proved that when the nonlinear
normdetermined by the network is bounded, then RNNwith
UPPAM operator possesses convergent and stable properties
in the sense that a discriminant matrix 𝑀(L, 𝐼) + 𝑃 is
nonnegative definite, where 𝑀(L, 𝐼) is a matrix related
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Figure 3: Transient behaviors of RNN in system (37) with random
initial point 𝑥

0

∈ [−1, 1]
3.

to the network and 𝑃 is an arbitrary nonnegative definite
matrix. Compared with the existing dynamics analysis, the
results in this paper extendmost of the dynamics conclusions
achieved. The requirements of net type, critical form and
activation operator’s character in the available literatures
have been dearly relaxed. Some typical RNNs with UPPAM
activation operators, such as most of the CNNs, BSB, and
BCOp-type networks, can apply the theory obtained here to
judge the dynamical behavior directly.The significance of the
results obtained here not only lies in providing some further
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cognizance on the essentially dynamical behavior of RNNs,
but also in enlarging the application field of them.

In this paper, we only achieved the global convergence
and asymptotical stability result for UPPAM RNNs and did
not discuss another important dynamics behavior, that is, the
exponential stability for UPPAMRNNs, and this is under our
current investigation.
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