152 research outputs found

    Robust-to-Noise Algorithms for Distributed Resource Allocation and Scheduling

    Full text link
    Efficient resource allocation and scheduling algorithms are essential for various distributed applications, ranging from wireless networks and cloud computing platforms to autonomous multi-agent systems and swarm robotic networks. However, real-world environments are often plagued by uncertainties and noise, leading to sub-optimal performance and increased vulnerability of traditional algorithms. This paper addresses the challenge of robust resource allocation and scheduling in the presence of noise and disturbances. The proposed study introduces a novel sign-based dynamics for developing robust-to-noise algorithms distributed over a multi-agent network that can adaptively handle external disturbances. Leveraging concepts from convex optimization theory, control theory, and network science the framework establishes a principled approach to design algorithms that can maintain key properties such as resource-demand balance and constraint feasibility. Meanwhile, notions of uniform-connectivity and versatile networking conditions are also addressed.Comment: IEEE/RSI ICRoM202

    Wireless Sensor Networks for Networked Manufacturing Systems

    Get PDF

    Distributed Delay-Tolerant Strategies for Equality-Constraint Sum-Preserving Resource Allocation

    Full text link
    This paper proposes two nonlinear dynamics to solve constrained distributed optimization problem for resource allocation over a multi-agent network. In this setup, coupling constraint refers to resource-demand balance which is preserved at all-times. The proposed solutions can address various model nonlinearities, for example, due to quantization and/or saturation. Further, it allows to reach faster convergence or to robustify the solution against impulsive noise or uncertainties. We prove convergence over weakly connected networks using convex analysis and Lyapunov theory. Our findings show that convergence can be reached for general sign-preserving odd nonlinearity. We further propose delay-tolerant mechanisms to handle general bounded heterogeneous time-varying delays over the communication network of agents while preserving all-time feasibility. This work finds application in CPU scheduling and coverage control among others. This paper advances the state-of-the-art by addressing (i) possible nonlinearity on the agents/links, meanwhile handling (ii) resource-demand feasibility at all times, (iii) uniform-connectivity instead of all-time connectivity, and (iv) possible heterogeneous and time-varying delays. To our best knowledge, no existing work addresses contributions (i)-(iv) altogether. Simulations and comparative analysis are provided to corroborate our contributions

    Inter-micro-operator interference protection in dynamic TDD system

    Get PDF
    Abstract. This thesis considers the problem of weighted sum-rate maximization (WSRM) for a system of micro-operators subject to inter-micro-operator interference constraints with dynamic time division duplexing. The WSRM problem is non-convex and non-deterministic polynomial hard. Furthermore, micro-operators require minimum coordination among themselves making the inter-micro-operator interference management very challenging. In this regard, we propose two decentralized precoder design algorithm based on over-the-air bi-directional signalling strategy. We first propose a precoder design algorithm by considering the equivalent weighted minimum mean-squared error minimization reformulation of the WSRM problem. Later we propose precoder design algorithm by considering the weighted sum mean-squared error reformulation. In both approaches, to reduce the huge signalling requirements in centralized design, we use alternating direction method of multipliers technique, wherein each downlink-operator base station and uplink-operator user determines only the relevant set of transmit precoders by exchanging minimal information among the coordinating base stations and user equipments. To minimize the coordination between the uplink-opeator users, we propose interference budget allocation scheme based on reference signal measurements from downlink-operator users. Numerical simulations are provided to compare the performance of proposed algorithms with and without the inter-micro-operator interference constraints

    Communication-Efficient Algorithms For Distributed Optimization

    Full text link
    This thesis is concerned with the design of distributed algorithms for solving optimization problems. We consider networks where each node has exclusive access to a cost function, and design algorithms that make all nodes cooperate to find the minimum of the sum of all the cost functions. Several problems in signal processing, control, and machine learning can be posed as such optimization problems. Given that communication is often the most energy-consuming operation in networks, it is important to design communication-efficient algorithms. The main contributions of this thesis are a classification scheme for distributed optimization and a set of corresponding communication-efficient algorithms. The class of optimization problems we consider is quite general, since each function may depend on arbitrary components of the optimization variable, and not necessarily on all of them. In doing so, we go beyond the common assumption in distributed optimization and create additional structure that can be used to reduce the number of communications. This structure is captured by our classification scheme, which identifies easier instances of the problem, for example the standard distributed optimization problem, where all functions depend on all the components of the variable. In our algorithms, no central node coordinates the network, all the communications occur between neighboring nodes, and the data associated with each node is processed locally. We show several applications including average consensus, support vector machines, network flows, and several distributed scenarios for compressed sensing. We also propose a new framework for distributed model predictive control. Through extensive numerical experiments, we show that our algorithms outperform prior distributed algorithms in terms of communication-efficiency, even some that were specifically designed for a particular application.Comment: Thesis defended on October 10, 2013. Dual PhD degree from Carnegie Mellon University, PA, and Instituto Superior T\'ecnico, Lisbon, Portuga
    • …
    corecore