5 research outputs found

    Convergence analysis of distributed fixed-step power control algorithm for cellular mobile systems

    Get PDF
    [[abstract]]Power control plays a vital role in the operation of cellular systems. It has been shown that a power control mechanism with distributed fixed-step control algorithm using a single bit can maintain the received carrier-to-interference ratio (CIR) within a desired range in long-term fading channels. However, as far as the short-term fading is concerned, whether such a power control algorithm remains convergent is not clear. In this work, a simple received CIR model is adopted to derive the condition that ensures system stability for short-term fading channels. The bounds of the received CIR are also obtained. Furthermore, the effects of the power control step size and the time required for convergence are also analyzed. Copyright (C) 2007 John Wiley & Sons, Ltd

    Convergence analysis of distributed fixed-step power control algorithm for cellular mobile systems

    No full text
    [[abstract]]Power control plays a vital role in the operation of cellular systems. It has been shown that a power control mechanism with distributed fixed-step control algorithm using a single bit can maintain the received carrier-to-interference ratio (CIR) within a desired range in long-term fading channels. However, as far as the short-term fading is concerned, whether such a power control algorithm remains convergent is not clear. In this work, a simple received CIR model is adopted to derive the condition that ensures system stability for short-term fading channels. The bounds of the received CIR are also obtained. Furthermore, the effects of the power control step size and the time required for convergence are also analyzed. Copyright © 2007 John Wiley & Sons, Ltd

    Convergence Analysis of Distributed Fixed-Step Power Control Algorithm for Cellular Mobile Systems

    No full text
    [[abstract]]Power control plays a vital role in the operation of cellular systems. It has been shown that a power control mechanism with distributed fixed-step control algorithm using a single bit can maintain the received carrier-to-interference ratio (CIR) within a desired range in long-term fading channels. However, as far as the short-term fading is concerned, whether such a power control algorithm remains convergent is not clear. In this work, a simple received CIR model is adopted to derive the condition that ensures system stability for short-term fading channels. The bounds of the received CIR are also obtained. Furthermore, the effects of the power control step size and the time required for convergence are also analyzed
    corecore