4,362 research outputs found

    Convergence Rates for Inverse Problems with Impulsive Noise

    Full text link
    We study inverse problems F(f) = g with perturbed right hand side g^{obs} corrupted by so-called impulsive noise, i.e. noise which is concentrated on a small subset of the domain of definition of g. It is well known that Tikhonov-type regularization with an L^1 data fidelity term yields significantly more accurate results than Tikhonov regularization with classical L^2 data fidelity terms for this type of noise. The purpose of this paper is to provide a convergence analysis explaining this remarkable difference in accuracy. Our error estimates significantly improve previous error estimates for Tikhonov regularization with L^1-fidelity term in the case of impulsive noise. We present numerical results which are in good agreement with the predictions of our analysis

    Convergence Rates for Exponentially Ill-Posed Inverse Problems with Impulsive Noise

    Full text link
    This paper is concerned with exponentially ill-posed operator equations with additive impulsive noise on the right hand side, i.e. the noise is large on a small part of the domain and small or zero outside. It is well known that Tikhonov regularization with an L1L^1 data fidelity term outperforms Tikhonov regularization with an L2L^2 fidelity term in this case. This effect has recently been explained and quantified for the case of finitely smoothing operators. Here we extend this analysis to the case of infinitely smoothing forward operators under standard Sobolev smoothness assumptions on the solution, i.e. exponentially ill-posed inverse problems. It turns out that high order polynomial rates of convergence in the size of the support of large noise can be achieved rather than the poor logarithmic convergence rates typical for exponentially ill-posed problems. The main tools of our analysis are Banach spaces of analytic functions and interpolation-type inequalities for such spaces. We discuss two examples, the (periodic) backwards heat equation and an inverse problem in gradiometry.Comment: to appear in SIAM J. Numer. Ana
    • …
    corecore