10 research outputs found

    Information Geometric Approach to Bayesian Lower Error Bounds

    Full text link
    Information geometry describes a framework where probability densities can be viewed as differential geometry structures. This approach has shown that the geometry in the space of probability distributions that are parameterized by their covariance matrix is linked to the fundamentals concepts of estimation theory. In particular, prior work proposes a Riemannian metric - the distance between the parameterized probability distributions - that is equivalent to the Fisher Information Matrix, and helpful in obtaining the deterministic Cram\'{e}r-Rao lower bound (CRLB). Recent work in this framework has led to establishing links with several practical applications. However, classical CRLB is useful only for unbiased estimators and inaccurately predicts the mean square error in low signal-to-noise (SNR) scenarios. In this paper, we propose a general Riemannian metric that, at once, is used to obtain both Bayesian CRLB and deterministic CRLB along with their vector parameter extensions. We also extend our results to the Barankin bound, thereby enhancing their applicability to low SNR situations.Comment: 5 page

    Direction of arrival estimation based on information geometry

    Full text link
    In this paper, a new direction of arrival (DOA) estimation approach is devised using concepts from information geometry (IG). The proposed method uses geodesic distances in the statistical manifold of probability distributions parametrized by their covariance matrix to estimate the direction of arrival of several sources. In order to obtain a practical method, the DOA estimation is treated as a single-variable optimization problem, for which the DOA solutions are found by means of a line search. The relation between the proposed method and MVDR beamformer is elucidated. An evaluation of its performance is carried out by means of Monte Carlo simulations and it is shown that the proposed method provides improved resolution capabilities at low SNR with respect to MUSIC and MVDR.Accepted Author ManuscriptCircuits and System

    A Framework for Population-Based Stochastic Optimization on Abstract Riemannian Manifolds

    Full text link
    We present Extended Riemannian Stochastic Derivative-Free Optimization (Extended RSDFO), a novel population-based stochastic optimization algorithm on Riemannian manifolds that addresses the locality and implicit assumptions of manifold optimization in the literature. We begin by investigating the Information Geometrical structure of statistical model over Riemannian manifolds. This establishes a geometrical framework of Extended RSDFO using both the statistical geometry of the decision space and the Riemannian geometry of the search space. We construct locally inherited probability distribution via an orientation-preserving diffeomorphic bundle morphism, and then extend the information geometrical structure to mixture densities over totally bounded subsets of manifolds. The former relates the information geometry of the decision space and the local point estimations on the search space manifold. The latter overcomes the locality of parametric probability distributions on Riemannian manifolds. We then construct Extended RSDFO and study its structure and properties from a geometrical perspective. We show that Extended RSDFO's expected fitness improves monotonically and it's global eventual convergence in finitely many steps on connected compact Riemannian manifolds. Extended RSDFO is compared to state-of-the-art manifold optimization algorithms on multi-modal optimization problems over a variety of manifolds. In particular, we perform a novel synthetic experiment on Jacob's ladder to motivate and necessitate manifold optimization. Jacob's ladder is a non-compact manifold of countably infinite genus, which cannot be expressed as polynomial constraints and does not have a global representation in an ambient Euclidean space. Optimization problems on Jacob's ladder thus cannot be addressed by traditional (constraint) optimization methods on Euclidean spaces.Comment: The present abstract is slightly altered from the PDF version due to the limitation "The abstract field cannot be longer than 1,920 characters
    corecore