750 research outputs found

    Finite Element Approximation of Elliptic Homogenization Problems in Nondivergence-Form

    Full text link
    We use uniform W2,pW^{2,p} estimates to obtain corrector results for periodic homogenization problems of the form A(x/ε):D2uε=fA(x/\varepsilon):D^2 u_{\varepsilon} = f subject to a homogeneous Dirichlet boundary condition. We propose and rigorously analyze a numerical scheme based on finite element approximations for such nondivergence-form homogenization problems. The second part of the paper focuses on the approximation of the corrector and numerical homogenization for the case of nonuniformly oscillating coefficients. Numerical experiments demonstrate the performance of the scheme.Comment: 39 page

    Corrector Analysis of a Heterogeneous Multi-scale Scheme for Elliptic Equations with Random Potential

    Full text link
    This paper analyzes the random fluctuations obtained by a heterogeneous multi-scale first-order finite element method applied to solve elliptic equations with a random potential. We show that the random fluctuations of such solutions are correctly estimated by the heterogeneous multi-scale algorithm when appropriate fine-scale problems are solved on subsets that cover the whole computational domain. However, when the fine-scale problems are solved over patches that do not cover the entire domain, the random fluctuations may or may not be estimated accurately. In the case of random potentials with short-range interactions, the variance of the random fluctuations is amplified as the inverse of the fraction of the medium covered by the patches. In the case of random potentials with long-range interactions, however, such an amplification does not occur and random fluctuations are correctly captured independent of the (macroscopic) size of the patches. These results are consistent with those obtained by the authors for more general equations in the one-dimensional setting and provide indications on the loss in accuracy that results from using coarser, and hence less computationally intensive, algorithms

    An introduction to the qualitative and quantitative theory of homogenization

    Full text link
    We present an introduction to periodic and stochastic homogenization of ellip- tic partial differential equations. The first part is concerned with the qualitative theory, which we present for equations with periodic and random coefficients in a unified approach based on Tartar's method of oscillating test functions. In partic- ular, we present a self-contained and elementary argument for the construction of the sublinear corrector of stochastic homogenization. (The argument also applies to elliptic systems and in particular to linear elasticity). In the second part we briefly discuss the representation of the homogenization error by means of a two- scale expansion. In the last part we discuss some results of quantitative stochastic homogenization in a discrete setting. In particular, we discuss the quantification of ergodicity via concentration inequalities, and we illustrate that the latter in combi- nation with elliptic regularity theory leads to a quantification of the growth of the sublinear corrector and the homogenization error.Comment: Lecture notes of a minicourse given by the author during the GSIS International Winter School 2017 on "Stochastic Homogenization and its applications" at the Tohoku University, Sendai, Japan; This version contains a correction of Lemma 2.1

    A localized orthogonal decomposition method for semi-linear elliptic problems

    Get PDF
    In this paper we propose and analyze a new Multiscale Method for solving semi-linear elliptic problems with heterogeneous and highly variable coefficient functions. For this purpose we construct a generalized finite element basis that spans a low dimensional multiscale space. The basis is assembled by performing localized linear fine-scale computations in small patches that have a diameter of order H |log H| where H is the coarse mesh size. Without any assumptions on the type of the oscillations in the coefficients, we give a rigorous proof for a linear convergence of the H1-error with respect to the coarse mesh size. To solve the arising equations, we propose an algorithm that is based on a damped Newton scheme in the multiscale space

    Numerical homogenization of H(curl)-problems

    Get PDF
    If an elliptic differential operator associated with an H(curl)\mathbf{H}(\mathrm{curl})-problem involves rough (rapidly varying) coefficients, then solutions to the corresponding H(curl)\mathbf{H}(\mathrm{curl})-problem admit typically very low regularity, which leads to arbitrarily bad convergence rates for conventional numerical schemes. The goal of this paper is to show that the missing regularity can be compensated through a corrector operator. More precisely, we consider the lowest order N\'ed\'elec finite element space and show the existence of a linear corrector operator with four central properties: it is computable, H(curl)\mathbf{H}(\mathrm{curl})-stable, quasi-local and allows for a correction of coarse finite element functions so that first-order estimates (in terms of the coarse mesh-size) in the H(curl)\mathbf{H}(\mathrm{curl}) norm are obtained provided the right-hand side belongs to H(div)\mathbf{H}(\mathrm{div}). With these four properties, a practical application is to construct generalized finite element spaces which can be straightforwardly used in a Galerkin method. In particular, this characterizes a homogenized solution and a first order corrector, including corresponding quantitative error estimates without the requirement of scale separation
    corecore