4,559 research outputs found

    Evaluating prose style transfer with the Bible

    Get PDF
    In the prose style transfer task a system, provided with text input and a target prose style, produces output which preserves the meaning of the input text but alters the style. These systems require parallel data for evaluation of results and usually make use of parallel data for training. Currently, there are few publicly available corpora for this task. In this work, we identify a high-quality source of aligned, stylistically distinct text in different versions of the Bible. We provide a standardized split, into training, development and testing data, of the public domain versions in our corpus. This corpus is highly parallel since many Bible versions are included. Sentences are aligned due to the presence of chapter and verse numbers within all versions of the text. In addition to the corpus, we present the results, as measured by the BLEU and PINC metrics, of several models trained on our data which can serve as baselines for future research. While we present these data as a style transfer corpus, we believe that it is of unmatched quality and may be useful for other natural language tasks as well

    Transfer Learning in Multilingual Neural Machine Translation with Dynamic Vocabulary

    Full text link
    We propose a method to transfer knowledge across neural machine translation (NMT) models by means of a shared dynamic vocabulary. Our approach allows to extend an initial model for a given language pair to cover new languages by adapting its vocabulary as long as new data become available (i.e., introducing new vocabulary items if they are not included in the initial model). The parameter transfer mechanism is evaluated in two scenarios: i) to adapt a trained single language NMT system to work with a new language pair and ii) to continuously add new language pairs to grow to a multilingual NMT system. In both the scenarios our goal is to improve the translation performance, while minimizing the training convergence time. Preliminary experiments spanning five languages with different training data sizes (i.e., 5k and 50k parallel sentences) show a significant performance gain ranging from +3.85 up to +13.63 BLEU in different language directions. Moreover, when compared with training an NMT model from scratch, our transfer-learning approach allows us to reach higher performance after training up to 4% of the total training steps.Comment: Published at the International Workshop on Spoken Language Translation (IWSLT), 201

    Findings of the IWSLT 2022 Evaluation Campaign.

    Get PDF
    The evaluation campaign of the 19th International Conference on Spoken Language Translation featured eight shared tasks: (i) Simultaneous speech translation, (ii) Offline speech translation, (iii) Speech to speech translation, (iv) Low-resource speech translation, (v) Multilingual speech translation, (vi) Dialect speech translation, (vii) Formality control for speech translation, (viii) Isometric speech translation. A total of 27 teams participated in at least one of the shared tasks. This paper details, for each shared task, the purpose of the task, the data that were released, the evaluation metrics that were applied, the submissions that were received and the results that were achieved

    On Neurons Invariant to Sentence Structural Changes in Neural Machine Translation

    Full text link
    We present a methodology that explores how sentence structure is reflected in neural representations of machine translation systems. We demonstrate our model-agnostic approach with the Transformer English-German translation model. We analyze neuron-level correlation of activations between paraphrases while discussing the methodology challenges and the need for confound analysis to isolate the effects of shallow cues. We find that similarity between activation patterns can be mostly accounted for by similarity in word choice and sentence length. Following that, we manipulate neuron activations to control the syntactic form of the output. We show this intervention to be somewhat successful, indicating that deep models capture sentence-structure distinctions, despite finding no such indication at the neuron level. To conduct our experiments, we develop a semi-automatic method to generate meaning-preserving minimal pair paraphrases (active-passive voice and adverbial clause-noun phrase) and compile a corpus of such pairs
    corecore