29 research outputs found

    Designing a visual component of communication within 3D avatar virtual worlds

    Get PDF
    Merged with duplicate record 10026.1/2600 on 08.20.2017 by CS (TIS)Over the last few years 3D avatar virtual worlds (AVW) have emerged on the Internet. These are computer generated, multi-user, graphical spaces within which people meet, form social groups and interact with each other in real time, typically through the exchange of text or audio messages. Each user is represented within the space by a digital image known as an avatar, which is usually humanoid in form, and is predominantly under the control of the person it represents. This thesisd escribesa creativep roject that is concernedw ith aspectso f social communication between users of "Ws. In particular, an avatar is designed that is capable of performing body language, and a set of useful gestures are implemented that support aspects of social interaction and integrate with verbal discourse in a meaningful way. In addition to this, a number of scenic properties are derived that enable better comprehension of the non verbal communication, e. g. spatial arrangement, camera position and lighting effects. The research consists of a number of interrelated design activities which include reviewing the literature on avatar design in order to locate goals and variety of the project, therefore building on the on the work of others; a comparative review of three popular 3D AVWs to explore the design problem; a study that aims to gain an understanding of the social dynamics involved; the adaptation of a diagrammatic technique for the purpose of modelling social interaction; the development of 2D and 3D prototype techniques exploring the application of the social interaction modelling technique; a body of creative work developing ideas for conveying non verbal communication and the appraisal of the effectiveness of this creative work. The research contributes to the field of avatar design in a number of ways. Firstly, it develops our understanding of social dynamics in virtual worlds. Secondly, it postulates modes of non verbal communication for both individuals and social groups that supports multi-participatory social discourse. Additionally, a number of useful research techniques have been devised, such as a linear diagramming technique that can be used to represent the structure of conversation thereby facilitating the exploration and understanding of the dynamics of AVW social discourse. The work is of interest to those working in the field of avatar and multi-user virtual world design. It may also be of interest to anyone thinking of using an avatar virtual world for the application of collaborative leaming, collaborative games and conferencing

    The Effects of Instructor-Avatar Immediacy in Second Life, an Immersive and Interactive 3D Virtual Environment

    Get PDF
    Growing interest of educational institutions in desktop 3D graphic virtual environments for hybrid and distance education prompts questions on the efficacy of such tools. Virtual worlds, such as Second Life®, enable computer-mediated immersion and interactions encompassing multimodal communication channels including audio, video, and text-. These are enriched by avatar-mediated body language and physical manipulation of the environment. In this para-physical world, instructors and students alike employ avatars to establish their social presence in a wide variety of curricular and extra-curricular contexts. As a proxy for the human body in synthetic 3D environments, an avatar represents a \u27real\u27 human computer user and incorporates default behavior patterns (e.g., autonomous gestures such as changes in body orientation or movement of hands) as well as expressive movements directly controlled by the user through keyboard \u27shortcuts.\u27 Use of headset microphones and various stereophonic effects allows users to project their speech directly from the apparent location of their avatar. In addition, personalized information displays allow users to share graphical information, including text messages and hypertext links. These \u27channels\u27 of information constituted an integrated and dynamic framework for projecting avatar \u27immediacy\u27 behaviors (including gestures, intonation, and patterns of interaction with students), that may positively or negatively affect the degree to which other observers of the virtual world perceive the user represented by the avatar as \u27socially present\u27 in the virtual world. This study contributes to the nascent research on educational implementations of Second Life in higher education. Although education researchers have investigated the impact of instructor immediacy behaviors on student perception of instructor social presence, students\u27 satisfaction, motivation, and learning, few researchers have examined the effects of immediacy behaviors in a 3D virtual environment or the effects of immediacy behaviors manifested by avatars representing instructors. The study employed a two-factor experimental design to investigate the relationship between instructor avatars\u27 immediacy behaviors (high vs. low) and students\u27 perception of instructor immediacy, instructor social presence, student avatars co-presence and learning outcomes in Second Life. The study replicates and extends aspects of an earlier study conducted by Maria Schutt, Brock S. Allen, and Mark Laumakis, including components of the experimental treatments that manipulated the frequency of various types of immediacy behaviors identified by other researchers as potentially related to perception of social presence in face-to-face and mediated instruction. Participants were 281 students enrolled in an introductory psychology course at San Diego State University who were randomly assigned to one of four groups. Each group viewed a different version of the 28-minute teaching session in Second Life on current perspective in psychology. Data were gathered from student survey responses and tests on the lesson content. Analysis of variance revealed significant differences between the treatment groups (F (3,113) = 6.5,p = .000). Students who viewed the high immediacy machinimas (Group 1 HiHi and Group 2 HiLo) rated the immediacy behaviors of the instructor-avatar more highly than those who viewed the low-immediacy machinimas (Group 3 LoHi and Group 4 LoLo). Findings also demonstrate strong correlations between students\u27 perception of instructor avatar immediacy and instructor social presence (r = .769). These outcomes in the context of a 3D virtual world are consistent with findings on instructor immediacy and social presence literature in traditional and online classes. Results relative to learning showed that all groups tested higher after viewing the treatment, with no significant differences between groups. Recommendations for current and future practice of using instructor-avatars include paralanguage behaviors such as voice quality, emotion and prosodic features and nonverbal behaviors such as proxemics and gestures, facial expression, lip synchronization and eye contact

    Differentiation of the Causal Characteristics and Influences of Virtual Reality and the Effects on Learning at a Science Exhibit

    Get PDF
    Within the context of the informal science center, exhibits are the main interface for public learning. Essential to the success of a science center is how well exhibits model effective strategies for learning. Virtual Reality (VR) technology with its flexible, adaptive, multimedia, and immersive-learning capabilities is emerging for use by science centers in exhibits; however, research on learning in virtual environments at exhibits is scarce. To support the future development of VR science exhibits it is critical to investigate VR\u27s pedagogical value and effects on science learning. Research investigated the Smoke & Mirrors VR exhibit at the Reuben H. Fleet Science Center in San Diego, California. Inquiry focused on the interplay between elements of the exhibit\u27s design, assessing the separate and interactive effects of visual imagery, moving images, sound, narration, and interactive tools to differentiate the causal characteristics and influences that enhanced and detracted from learning. Case study methodology was employed utilizing visitor observations and interviews with 14 participants. Findings indicated that realistic visual elements with text were the primary sources of content learning; however, positive results were limited to only a few participants. High cognitive load due to interactive tools; instructional design; and movement of visual images were found to be significant detracting characteristics of participant learning. Other characteristics and influences of VR were also found that directly effected learning. Research results will inform the forthcoming design of a new VR exhibit at the Reuben H. Fleet Science Center and to the design and development of future VR exhibits at informal science centers. A prior brief mixed-methods evaluation of Smoke & Mirrors was conducted in 2003, contributing background to the study and its future implications and strategies

    Freeform User Interfaces for Graphical Computing

    Get PDF
    報告番号: 甲15222 ; 学位授与年月日: 2000-03-29 ; 学位の種別: 課程博士 ; 学位の種類: 博士(工学) ; 学位記番号: 博工第4717号 ; 研究科・専攻: 工学系研究科情報工学専

    Distant pointing in desktop collaborative virtual environments

    Get PDF
    Deictic pointing—pointing at things during conversations—is natural and ubiquitous in human communication. Deictic pointing is important in the real world; it is also important in collaborative virtual environments (CVEs) because CVEs are 3D virtual environments that resemble the real world. CVEs connect people from different locations, allowing them to communicate and collaborate remotely. However, the interaction and communication capabilities of CVEs are not as good as those in the real world. In CVEs, people interact with each other using avatars (the visual representations of users). One problem of avatars is that they are not expressive enough when compare to what we can do in the real world. In particular, deictic pointing has many limitations and is not well supported. This dissertation focuses on improving the expressiveness of distant pointing—where referents are out of reach—in desktop CVEs. This is done by developing a framework that guides the design and development of pointing techniques; by identifying important aspects of distant pointing through observation of how people point at distant referents in the real world; by designing, implementing, and evaluating distant-pointing techniques; and by providing a set of guidelines for the design of distant pointing in desktop CVEs. The evaluations of distant-pointing techniques examine whether pointing without extra visual effects (natural pointing) has sufficient accuracy; whether people can control free arm movement (free pointing) along with other avatar actions; and whether free and natural pointing are useful and valuable in desktop CVEs. Overall, this research provides better support for deictic pointing in CVEs by improving the expressiveness of distant pointing. With better pointing support, gestural communication can be more effective and can ultimately enhance the primary function of CVEs—supporting distributed collaboration

    Avatar augmented online conversation

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2003.Includes bibliographical references (p. 167-175).One of the most important roles played by technology is connecting people and mediating their communication with one another. Building technology that mediates conversation presents a number of challenging research and design questions. Apart from the fundamental issue of what exactly gets mediated, two of the more crucial questions are how the person being mediated interacts with the mediating layer and how the receiving person experiences the mediation. This thesis is concerned with both of these questions and proposes a theoretical framework of mediated conversation by means of automated avatars. This new approach relies on a model of face-to-face conversation, and derives an architecture for implementing these features through automation. First the thesis describes the process of face-to-face conversation and what nonverbal behaviors contribute to its success. It then presents a theoretical framework that explains how a text message can be automatically analyzed in terms of its communicative function based on discourse context, and how behaviors, shown to support those same functions in face-to-face conversation, can then be automatically performed by a graphical avatar in synchrony with the message delivery. An architecture, Spark, built on this framework demonstrates the approach in an actual system design that introduces the concept of a message transformation pipeline, abstracting function from behavior, and the concept of an avatar agent, responsible for coordinated delivery and continuous maintenance of the communication channel. A derived application, MapChat, is an online collaboration system where users represented by avatars in a shared virtual environment can chat and manipulate an interactive map while their avatars generate face-to-face behaviors.(cont.) A study evaluating the strength of the approach compares groups collaborating on a route-planning task using MapChat with and without the animated avatars. The results show that while task outcome was equally good for both groups, the group using these avatars felt that the task was significantly less difficult, and the feeling of efficiency and consensus were significantly stronger. An analysis of the conversation transcripts shows a significant improvement of the overall conversational process and significantly fewer messages spent on channel maintenance in the avatar groups. The avatars also significantly improved the users' perception of each others' effort. Finally, MapChat with avatars was found to be significantly more personal, enjoyable, and easier to use. The ramifications of these findings with respect to mediating conversation are discussed.by Hannes Högni. Vilhjálmsson.Ph.D

    Simulation of nonverbal social interaction and small groups dynamics in virtual environments

    Get PDF
    How can the behaviour of humans who interact with other humans be simulated in virtual environments? This thesis investigates the issue by proposing a number of dedicated models, computer languages, software architectures, and specifications of computational components. It relies on a large knowledge base from the social sciences, which offers concepts, descriptions, and classifications that guided the research process. The simulation of nonverbal social interaction and group dynamics in virtual environments can be divided in two main research problems: (1) an action selection problem, where autonomous agents must be made capable of deciding when, with whom, and how they interact according to individual characteristics of themselves and others; and (2) a behavioural animation problem, where, on the basis of the selected interaction, 3D characters must realistically behave in their virtual environment and communicate nonverbally with others by automatically triggering appropriate actions such as facial expressions, gestures, and postural shifts. In order to introduce the problem of action selection in social environments, a high-level architecture for social agents, based on the sociological concepts of role, norm, and value, is first discussed. A model of action selection for members of small groups, based on proactive and reactive motivational components, is then presented. This model relies on a new tagbased language called Social Identity Markup Language (SIML), allowing the rich specification of agents' social identities and relationships. A complementary model controls the simulation of interpersonal relationship development within small groups. The interactions of these two models create a complex system exhibiting emergent properties for the generation of meaningful sequences of social interactions in the temporal dimension. To address the issues related to the visualization of nonverbal interactions, results are presented of an evaluation experiment aimed at identifying the application requirements through an analysis of how real people interact nonverbally in virtual environments. Based on these results, a number of components for MPEG-4 body animation, AML — a tag-based language for the seamless integration and synchronization of facial animation, body animation, and speech — and a high-level interaction visualization service for the VHD++ platform are described. This service simulates the proxemic and kinesic aspects of nonverbal social interactions, and comprises such functionalities as parametric postures, adapters and observation behaviours, the social avoidance of collisions, intelligent approach behaviours, and the calculation of suitable interaction distances and angles

    Inhabiting the virtual city : the design of social environments for electronic communities

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Program in Media Arts & Sciences, 1997.Includes bibliographical references (p. [101]-111).Judith Stefania Donath.Ph.D
    corecore