3 research outputs found

    Selective monostability in multi-stable systems

    Full text link
    We propose a robust method that allows a periodic or a chaotic multi-stable system to be transformed to a monostable system at an orbit with dominant frequency of any of the coexisting attractors. Our approach implies the selection of a particular attractor by periodic external modulation with frequency close to the dominant frequency in the power spectrum of a desired orbit and simultaneous annihilation of all other coexisting states by positive feedback, both applied to one of the system parameters. The method does not require any preliminary knowledge of the system dynamics and the phase space structure. The efficiency of the method is demonstrated in both a non-autonomous multi-stable laser with coexisting periodic orbits and an autonomous Rössler-like oscillator with coexisting chaotic attractors. The experiments with an erbium-doped fibre laser provide evidence for the robustness of the proposed method in making the system monostable at an orbit with dominant frequency of any preselected attractor

    Hopf bifurcation, antimonotonicity and amplitude controls in the chaotic Toda jerk oscillator: analysis, circuit realization and combination synchronization in its fractional-order form

    Get PDF
    In this paper, an autonomous Toda jerk oscillator is proposed and analysed. The autonomous Toda jerk oscillator is obtained by converting an autonomous two-dimensional Toda oscillator with an exponential nonlinear term to a jerk oscillator. The existence of Hopf bifurcation is established during the stability analysis of the unique equilibrium point. For a suitable choice of the parameters, the proposed autonomous Toda jerk oscillator can generate antimonotonicity, periodic oscillations, chaotic oscillations and bubbles. By introducing two additional parameters in the proposed autonomous Toda jerk oscillator, it is possible to control partially or totally the amplitude of its signals. In addition, electronic circuit realization of the proposed Toda jerk oscillator is carried out to confirm results found during numerical simulations. The commensurate fractional-order version of the proposed autonomous chaotic Toda jerk oscillator is studied using the stability theorem of fractional-order oscillators and numerical simulations. It is found that periodic oscillations and chaos exist in the fractional-order form of the proposed Toda jerk oscillator with order less than three. Finally, combination synchronization of two fractional-order proposed autonomous chaotic Toda jerk oscillators with another fractional-order proposed autonomous chaotic Toda jerk oscillator is analysed using the nonlinear feedback control method

    State switching in multi-stable systems: control and optimisation.

    Get PDF
    This thesis studies state-switching in multistable systems, so that they can switch from inefficient operating states to a more efficient one, in order to achieve performance enhancement in real-life engineering systems. Multistable systems have more than one stable state under a set of parameters and the process of switching from an undesired state to a desired state is achieved by the proposed PD-like controller. It exploits the difference of the displacement and velocity between the undesired and the desired stable conditions for feedback in state switching. Three test systems are used for investigating the performance of this PD-like controller, namely: the Duffing oscillator, which is a typical smooth multistable system; the non-smooth soft-impact oscillator; and the soft-impact oscillator with a drift. A randomised triangular subdivision algorithm is proposed to reconstruct the basins of attraction of the target multistable systems, in order to identify the desired state for switching. Due to the limited capacity of physical actuators, behaviours of the constrained PD-like controller are investigated using extensive simulation on the test systems. Moreover, optimisation of the controller (based on multiple performance objectives) can further improve system performance. Two performance objectives - maximum peak of control input and switching duration - are adopted in optimising the proposed PD-like controller. The first objective is minimised in order to avoid output limit and reduce energy consumption in the actuator, while the second objective is minimised in order to shorten the time required for state switching. These two performance objectives are considered independently in performance optimisation, using particle swarm optimisation (PSO). Since these two objectives are in conflict with each other, both objectives are minimised simultaneously in multiobjective optimisation of the performance of the PD-like controller using Non-Dominated Sorting Genetic Algorithms-II (NSGA-II). A trade-off in performance enhancement is achieved through selecting control parameters from the Pareto optimal set
    corecore