4,237 research outputs found

    Minimally-Augmented Grammatical Error Correction

    Get PDF

    Exploring Effectiveness of GPT-3 in Grammatical Error Correction: A Study on Performance and Controllability in Prompt-Based Methods

    Full text link
    Large-scale pre-trained language models such as GPT-3 have shown remarkable performance across various natural language processing tasks. However, applying prompt-based methods with GPT-3 for Grammatical Error Correction (GEC) tasks and their controllability remains underexplored. Controllability in GEC is crucial for real-world applications, particularly in educational settings, where the ability to tailor feedback according to learner levels and specific error types can significantly enhance the learning process. This paper investigates the performance and controllability of prompt-based methods with GPT-3 for GEC tasks using zero-shot and few-shot setting. We explore the impact of task instructions and examples on GPT-3's output, focusing on controlling aspects such as minimal edits, fluency edits, and learner levels. Our findings demonstrate that GPT-3 could effectively perform GEC tasks, outperforming existing supervised and unsupervised approaches. We also showed that GPT-3 could achieve controllability when appropriate task instructions and examples are given.Comment: Accepted in BEA 202

    Mask the Correct Tokens: An Embarrassingly Simple Approach for Error Correction

    Full text link
    Text error correction aims to correct the errors in text sequences such as those typed by humans or generated by speech recognition models. Previous error correction methods usually take the source (incorrect) sentence as encoder input and generate the target (correct) sentence through the decoder. Since the error rate of the incorrect sentence is usually low (e.g., 10\%), the correction model can only learn to correct on limited error tokens but trivially copy on most tokens (correct tokens), which harms the effective training of error correction. In this paper, we argue that the correct tokens should be better utilized to facilitate effective training and then propose a simple yet effective masking strategy to achieve this goal. Specifically, we randomly mask out a part of the correct tokens in the source sentence and let the model learn to not only correct the original error tokens but also predict the masked tokens based on their context information. Our method enjoys several advantages: 1) it alleviates trivial copy; 2) it leverages effective training signals from correct tokens; 3) it is a plug-and-play module and can be applied to different models and tasks. Experiments on spelling error correction and speech recognition error correction on Mandarin datasets and grammar error correction on English datasets with both autoregressive and non-autoregressive generation models show that our method improves the correction accuracy consistently.Comment: main track of EMNLP 202

    Controlled Generation with Prompt Insertion for Natural Language Explanations in Grammatical Error Correction

    Full text link
    In Grammatical Error Correction (GEC), it is crucial to ensure the user's comprehension of a reason for correction. Existing studies present tokens, examples, and hints as to the basis for correction but do not directly explain the reasons for corrections. Although methods that use Large Language Models (LLMs) to provide direct explanations in natural language have been proposed for various tasks, no such method exists for GEC. Generating explanations for GEC corrections involves aligning input and output tokens, identifying correction points, and presenting corresponding explanations consistently. However, it is not straightforward to specify a complex format to generate explanations, because explicit control of generation is difficult with prompts. This study introduces a method called controlled generation with Prompt Insertion (PI) so that LLMs can explain the reasons for corrections in natural language. In PI, LLMs first correct the input text, and then we automatically extract the correction points based on the rules. The extracted correction points are sequentially inserted into the LLM's explanation output as prompts, guiding the LLMs to generate explanations for the correction points. We also create an Explainable GEC (XGEC) dataset of correction reasons by annotating NUCLE, CoNLL2013, and CoNLL2014. Although generations from GPT-3 and ChatGPT using original prompts miss some correction points, the generation control using PI can explicitly guide to describe explanations for all correction points, contributing to improved performance in generating correction reasons.Comment: Work in progres

    非英語母語話者のためのインタラクティブな書き換え

    Get PDF
    Tohoku University博士(情報科学)thesi

    Beyond Hard Samples: Robust and Effective Grammatical Error Correction with Cycle Self-Augmenting

    Full text link
    Recent studies have revealed that grammatical error correction methods in the sequence-to-sequence paradigm are vulnerable to adversarial attack, and simply utilizing adversarial examples in the pre-training or post-training process can significantly enhance the robustness of GEC models to certain types of attack without suffering too much performance loss on clean data. In this paper, we further conduct a thorough robustness evaluation of cutting-edge GEC methods for four different types of adversarial attacks and propose a simple yet very effective Cycle Self-Augmenting (CSA) method accordingly. By leveraging the augmenting data from the GEC models themselves in the post-training process and introducing regularization data for cycle training, our proposed method can effectively improve the model robustness of well-trained GEC models with only a few more training epochs as an extra cost. More concretely, further training on the regularization data can prevent the GEC models from over-fitting on easy-to-learn samples and thus can improve the generalization capability and robustness towards unseen data (adversarial noise/samples). Meanwhile, the self-augmented data can provide more high-quality pseudo pairs to improve model performance on the original testing data. Experiments on four benchmark datasets and seven strong models indicate that our proposed training method can significantly enhance the robustness of four types of attacks without using purposely built adversarial examples in training. Evaluation results on clean data further confirm that our proposed CSA method significantly improves the performance of four baselines and yields nearly comparable results with other state-of-the-art models. Our code is available at https://github.com/ZetangForward/CSA-GEC
    corecore