2,760 research outputs found

    Evolutionary neurocontrol: A novel method for low-thrust gravity-assist trajectory optimization

    Get PDF
    This article discusses evolutionary neurocontrol, a novel method for low-thrust gravity-assist trajectory optimization

    Data-based stabilization of unknown bilinear systems with guaranteed basin of attraction

    Get PDF
    Motivated by the goal of having a building block in the direct design of data-driven controllers for nonlinear systems, we show how, for an unknown discrete-time bilinear system, the data collected in an offline open-loop experiment enable us to design a feedback controller and provide a guaranteed under-approximation of its basin of attraction. Both can be obtained by solving a linear matrix inequality for a fixed scalar parameter, and possibly iterating on different values of that parameter. The results of this data-based approach are compared with the ideal case when the model is known perfectly

    Design Optimization, Analysis, and Control of Walking Robots

    Get PDF
    Passive dynamic walking refers to the dynamical behavior of mechanical devices that are able to naturally walk down a shallow slope in a stable manner, without using actuation or sensing of any kind. Such devices can attain motions that are remarkably human-like by purely exploiting their natural dynamics. This suggests that passive dynamic walking machines can be used to model and study human locomotion; however, there are two major limitations: they can be difficult to design, and they cannot walk on level ground or uphill without some kind of actuation. This thesis presents a mechanism design optimization framework that allows the designer to find the best design parameters based on the chosen performance metric(s). The optimization is formulated as a convex problem, where its solutions are globally optimal and can be obtained efficiently. To enable locomotion on level ground and uphill, this thesis studies a robot based on a passive walker: the rimless wheel with an actuated torso. We design and validate two control policies for the robot through the use of scalable methodology based on tools from mathematical analysis, optimization theory, linear algebra, differential equations, and control theory

    An Improved Constraint-Tightening Approach for Stochastic MPC

    Full text link
    The problem of achieving a good trade-off in Stochastic Model Predictive Control between the competing goals of improving the average performance and reducing conservativeness, while still guaranteeing recursive feasibility and low computational complexity, is addressed. We propose a novel, less restrictive scheme which is based on considering stability and recursive feasibility separately. Through an explicit first step constraint we guarantee recursive feasibility. In particular we guarantee the existence of a feasible input trajectory at each time instant, but we only require that the input sequence computed at time kk remains feasible at time k+1k+1 for most disturbances but not necessarily for all, which suffices for stability. To overcome the computational complexity of probabilistic constraints, we propose an offline constraint-tightening procedure, which can be efficiently solved via a sampling approach to the desired accuracy. The online computational complexity of the resulting Model Predictive Control (MPC) algorithm is similar to that of a nominal MPC with terminal region. A numerical example, which provides a comparison with classical, recursively feasible Stochastic MPC and Robust MPC, shows the efficacy of the proposed approach.Comment: Paper has been submitted to ACC 201

    Estimation of non-symmetric and unbounded region of attraction using shifted shape function and R-composition

    Full text link
    A general numerical method using sum of squares programming is proposed to address the problem of estimating the region of attraction (ROA) of an asymptotically stable equilibrium point of a nonlinear polynomial system. The method is based on Lyapunov theory, and a shape function is defined to enlarge the provable subset of a local Lyapunov function. In contrast with existing methods with a shape function centered at the equilibrium point, the proposed method utilizes a shifted shape function (SSF) with its center shifted iteratively towards the boundary of the newly obtained invariant subset to improve ROA estimation. A set of shifting centers with corresponding SSFs is generated to produce proven subsets of the exact ROA and then a composition method, namely R-composition, is employed to express these independent sets in a compact form by just a single but richer-shaped level set. The proposed method denoted as RcomSSF brings a significant improvement for general ROA estimation problems, especially for non-symmetric or unbounded ROA, while keeping the computational burden at a reasonable level. Its effectiveness and advantages are demonstrated by several benchmark examples from literature.Comment: 40 pages, 9 figure
    • …
    corecore