
DESIGN OPTIMIZATION, ANALYSIS, AND CONTROL

OF WALKING ROBOTS

by

Wankun Sirichotiyakul

A thesis

submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Mechanical Engineering

Boise State University

August 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Boise State University - ScholarWorks

https://core.ac.uk/display/228019355?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

c© 2019
Wankun Sirichotiyakul

ALL RIGHTS RESERVED

BOISE STATE UNIVERSITY GRADUATE COLLEGE

DEFENSE COMMITTEE AND FINAL READING APPROVALS

of the thesis submitted by

Wankun Sirichotiyakul

Thesis Title: Design Optimization, Analysis, and Control of Walking Robots

Date of Final Oral Examination: 30th May 2019

The following individuals read and discussed the thesis submitted by student Wankun
Sirichotiyakul, and they evaluated the presentation and response to questions dur-
ing the final oral examination. They found that the student passed the final oral
examination.

Aykut Satici, Ph.D. Chair, Supervisory Committee

John Chiasson, Ph.D. Member, Supervisory Committee

John Gardner, P.E., Ph.D. Member, Supervisory Committee

Joseph Guarino, P.E., Ph.D. Member, Supervisory Committee

Trevor Lujan, Ph.D. Member, Supervisory Committee

The final reading approval of the thesis was granted by Aykut Satici, Ph.D., Chair of
the Supervisory Committee. The thesis was approved by the Graduate College.

ACKNOWLEDGMENTS

My greatest appreciation naturally goes to my advisor, Professor Aykut C. Satici.

In the past two years, his patient guidance, encouragement, and a vast amount of

academic knowledge have been invaluable contributions to my success as a graduate

student. I am forever grateful for this opportunity.

I would like to extend my gratitude to the other members of my thesis committee:

Professor John Chiasson, Professor John Gardner, Professor Joseph Guarino, and

Professor Trevor Lujan for generously offering their time, guidance, and goodwill

throughout the preparation and review of this document.

To my friends Jason Kuwada, Oliver Alvarez, Kalin Gibbons, and my lab mate

Nardos Ashenafi, thank you for the lunch breaks and for listening to my endless raves

and rantings. You all have provided the much needed escapes from stress and made

my experience at Boise State fun and exciting.

Last but not least, I wish to express my deepest gratitude and appreciation to my

father, my mother, and my sisters for their unconditional love and relentless support.

None of my accomplishments would have been possible without my lovely family. I

am grateful for them much more than I could ever express.

iv

ABSTRACT

Passive dynamic walking refers to the dynamical behavior of mechanical devices

that are able to naturally walk down a shallow slope in a stable manner, without

using actuation or sensing of any kind. Such devices can attain motions that are

remarkably human-like by purely exploiting their natural dynamics. This suggests

that passive dynamic walking machines can be used to model and study human

locomotion; however, there are two major limitations: they can be difficult to design,

and they cannot walk on level ground or uphill without some kind of actuation.

This thesis presents a mechanism design optimization framework that allows

the designer to find the best design parameters based on the chosen performance

metric(s). The optimization is formulated as a convex problem, where its solutions

are globally optimal and can be obtained efficiently.

To enable locomotion on level ground and uphill, this thesis studies a robot based

on a passive walker: the rimless wheel with an actuated torso. We design and validate

two control policies for the robot through the use of scalable methodology based on

tools from mathematical analysis, optimization theory, linear algebra, differential

equations, and control theory.

v

TABLE OF CONTENTS

ACKNOWLEDGMENTS . iv

ABSTRACT . v

LIST OF TABLES . ix

LIST OF FIGURES . x

1 Introduction . 1

1.1 Mechanism Design Optimization . 2

1.1.1 Literature Survey . 2

1.1.2 Contributions . 4

1.2 Control of a Torso-Actuated Rimless Wheel . 5

1.2.1 Literature Survey . 5

1.2.2 Contributions . 7

2 Background . 8

2.1 Sums of Squares Optimization . 8

2.2 Analyzing Periodic Motions of Dynamical Systems 13

2.2.1 Limit Cycles . 13

2.2.2 Poincaré Section and Poincaré Map . 15

2.2.3 Transverse Coordinates and Transverse Dynamics 17

2.3 Linear Quadratic Regulator . 19

vi

2.3.1 Continuous-Time LQR . 19

2.3.2 Discrete-Time LQR . 20

2.3.3 Region of Attraction Estimation . 21

3 Convex Optimization of Robotic Manipulator Designs via Sum-of-

Squares Programming . 23

3.1 Kinematic and Dynamic Performance Indices . 23

3.2 Polynomial Manipulator Equations . 25

3.2.1 Kinematic Jacobian and the Manipulability Matrix 26

3.2.2 Mass Matrix . 28

3.3 The Optimization Problem . 29

3.4 Methods . 30

3.4.1 Unconstrained semidefinite optimization of GII and GDI 31

3.4.2 Formulating the constraints . 33

3.4.3 Multicriteria Optimization . 33

3.5 Optimization Results . 33

3.6 Conclusions . 35

4 Orbital Stabilization of a Torso-Actuated Rimless Wheel 37

4.1 System Model . 37

4.1.1 Swing model – continuous dynamics . 39

4.1.2 Impact model – discrete transition . 40

4.1.3 Hybrid model . 41

4.2 Control Design . 42

4.2.1 Discrete-Time (DT) Controller . 42

4.2.2 Continuous-Time (CT) Controller . 44

vii

4.2.3 Implementation of the Controllers . 46

4.2.4 Region of Attraction Estimation . 47

4.2.5 Impact Map Analysis and Controller Improvements 48

4.3 Simulation Studies . 51

4.3.1 Discrete-Time (DT) Controller . 51

4.3.2 Continuous-Time (CT) Controller . 52

4.3.3 Comparison of the CT and DT Controllers 54

4.4 Experimental Studies . 55

4.4.1 Prototype . 56

4.4.2 Results . 57

4.5 Conclusion . 58

5 Conclusions . 59

REFERENCES . 60

viii

LIST OF TABLES

3.1 Indeterminates for the two-link manipulator . 26

3.2 Design variables α and parameters β . 30

3.3 Results of independent optimizations with respect to GII and GDI 34

4.1 Parameters of the system . 52

4.2 Coefficients of Poincaré map approximation . 52

ix

LIST OF FIGURES

2.1 Visualization of Poincaré section . 18

3.1 Schematic of a two-link serial manipulator in elbow-out posture 27

3.2 Pareto-front curve generated via sums-of-squares optimization 35

4.1 Schematic of rimless wheel with torso . 38

4.2 Continuous-time Controller Computation . 53

4.3 Convergence of the DT and CT controllers . 54

4.4 Regions of attraction of the DT and CT controllers 55

4.5 Experimental prototype . 56

4.6 Experimental results . 57

x

1

CHAPTER 1

INTRODUCTION

The problem of robot locomotion is traditionally approached by studying and

mimicking people’s walking motions in terms of the their joint angles (knees, ankles,

etc.) and the characteristics of the ground reaction forces. While walking robots

designed using this approach can execute robust motions, they are not versatile

and not very human-like. Furthermore, the control paradigm associated with this

approach typically imposes the desired dynamics to the system without using the

natural dynamics to its advantage. This demands high control authority and leads

to large energy requirements [1].

A more clever approach is to study mechanisms that exhibit passive dynamic

walking behavior with gait appearance that is comparable to human locomotion.

By designing robots that exploit their natural dynamics, the energy requirement for

locomotion is significantly reduced, and the walking motion is more natural.

Building such robots require, in particular, judicious mechanism and control sys-

tem designs. Kinematic and dynamic performance of a robot are highly dependent

on its geometrical parameters. This gives an opportunity to approach the mechanism

design task as an optimization problem. Control systems need to be designed to

expend control effort only when needed, and allow the natural dynamics to perform

most of the work for locomotion.

2

In this thesis, we tackle these two issues: (1) the design optimization of mecha-

nisms using efficient methods that can guarantee global optimality of the solution,

and (2) a control problem for hybrid dynamical systems whose motions are periodic.

1.1 Mechanism Design Optimization

The design of robotic manipulators may be achieved by optimizing certain per-

formance measures, which are dependent on the robot’s geometrical parameters.

Traditionally, the design optimization problems have been formulated using nonlinear

and nonconvex techniques. This is largely due to the nonlinear nature of the kinematic

and dynamic equations of most robotic manipulators and the performance metrics.

Finding solutions for nonlinear, nonconvex optimization problems are difficult and

inefficient. To address these issues, this thesis presents a general framework for casting

the design optimization problem as a convex one, where the solution is guaranteed to

be globally optimal and can be obtained efficiently.

1.1.1 Literature Survey

The majority of the literature on design optimization of robotic manipulators

use nonlinear and nonconvex methods to attack the problem. A brief account of

such methods include the culling algorithm [2, 3, 4], different variations of the genetic

algorithm [5, 6, 7, 8], the differential evolution algorithm [9], performance-chart based

methods [10], workspace atlases [11], controlled random search technique [12], and

Monte Carlo method [13, 14]. These methods have relative strengths and weaknesses;

however, a common undesirable characteristic that plagues them is their tendency to

3

get stuck at a local optimum. Branch-and-bound methods overcome this problem at

the cost of limited accuracy and the need to perform a much more expensive search.

Convex optimization methods circumvent all the issues described above. However,

a complete formulation of the design optimization problem as a convex problem has

eluded the researchers so far. Lou et. al. [15] discretize the space of design parameters

into a set of discrete nodes to formulate and solve a convex optimization problem

constrained by a number of linear matrix inequalities (LMIs) at each discretized point.

Combining the results of each problem yields a better design, but not necessarily the

global optimum since the designer does not know how smooth the design objective is,

a priori. Convex optimization has also been used to find the largest ellipse contained

in the singularity-free workspace of a manipulator [16], where the design parameters

are kept as constants.

An optimal design of a robotic manipulator often can only be achieved by con-

sidering many competing objectives [2]. There exist several studies in which multiple

design criteria have been addressed for this purpose. Hayward et al. define the

relationship between multiple criteria and utilize sensitivities of these criteria to

conduct a hierarchical optimization study [17]. Multiple objectives are considered

sequentially in [18, 19, 20, 4] by searching for parameter sets resulting in near optimal

kinematic performance and then selecting the design exhibiting the best dynamic

performance from this reduced parameter space. Task-priority [21], probabilistic

weighting [22], composite index [23], and tabular methods [24] are among the other

approaches that consider multiple criteria.

Pareto methods incorporate all optimization criteria within the optimization pro-

cess and address them simultaneously to find a set of efficient solutions. Each design

alternative in the solution set corresponds to a non-dominated design in the objective

4

space. In other words, these methods aim to construct the Pareto-front hypersurface

representing the design trade-offs between multiple criteria. Once such a hypersurface

resolving the design trade-offs is obtained, an appropriate design on this hypersurface

can be selected, taking into account the other design requirements of the particular

application in consideration.

1.1.2 Contributions

The main contribution of this work, presented in Chapter 3, is the reformulation of

the problem of design optimization of robotic manipulators as a convex optimization

problem by invoking sum-of-squares (SoS) techniques [25]. This allows for global

optimization of many performance indices efficiently with accuracy up to machine

precision. Moreover, sum-of-squares optimization scales exceptionally well as the

number of design parameters increase, contrary to branch and bound methods whose

computational complexity increases exponentially. In this problem, we consider the

multi-criteria optimization of two performance measures: the global kinematic and

dynamic isotropy indices, GII and GDI, respectively [4]. The Pareto-front curve

is obtained by using the scalarization (weighted-sum) method to turn the multi-

objective optimization problem into a series of single-objective ones. We use SoS

programming to solve each individual single-objective problem. A proof-of-concept

case-study that formulates and solves the design optimization problem for the planar

two-link manipulator is presented. This mechanism is also representative of the

rimless wheel with a torso undergoing the swing phase, a robot based on a passive

dynamic walking device of interest in this thesis.

This material has been published in the Third IEEE International Conference on

Robotic Computing (IRC 2019) [26].

5

1.2 Control of a Torso-Actuated Rimless Wheel

Passive dynamic walking robots locomote without sensing or actuation of any kind.

Perhaps the simplest and most popular of its kind is the rimless wheel, a multi-spoked

wheel with the rim removed, first developed by McGeer [27], almost two decades ago.

When a rimless wheel is launched on a downhill ramp, it is able to sustain steady

locomotion as the kinetic energy lost through impacts is supplied back to the system

from the stored potential energy over the swing phase. Robots with such fortuitous

natural dynamics are highly energy efficient because no external energy needs to be

provided for locomotion. On the other hand, we still want to actuate walking robots to

overcome at least the following two major issues: (1) sustenance of dynamically stable

walking uphill or on level ground [28], and (2) robustness to external disturbances.

This thesis presents the methodology to devise control laws that address these two

major issues by utilizing the control authority at our disposal due to the addition of

actuator(s).

1.2.1 Literature Survey

One way to enable sustained locomotion of a rimless wheel on level ground is to

have a design that incurs zero kinetic energy losses during impacts, which is achievable

by reducing the spoke collision velocity to zero. Gomes [29] uses an inertial disk that

is coupled to the rimless wheel through a torsional spring, thus storing and releasing

energy to the robot at appropriate times. Such a robot will need a shallow ramp to

sustain walking motion in reality to compensate for the dissipation in the springs,

inertia disk, and frictional losses.

Another way to enable walking is to have an actively powered rimless wheel.

6

Some extensions to the rimless wheel of this sort can be found in [30, 31] where the

spokes expand and contract, thus supplying energy to the robot. A drawback of this

implementation is that it requires multiple actuators. Other examples include rimless

wheels with a wobbling mass [32] or a rotating disc [33] that transfers energy through

dynamic coupling.

Bhounsule [34] designed a rimless wheel with a torso which may be actuated to

provide the necessary energy for continuous walking on level or uphill slopes. The

torso position is regulated at a certain moment during the gait by an event-based,

discrete controller. This controller assumes the unrealistic ability to instantaneously

change the torso angle. In this thesis, we show that there are performance benefits

of continuously moving the torso including energy efficiency and robustness.

The rimless wheel with torso is modeled as a hybrid dynamical system, which

exhibits both continuous and discrete phases [35, 36]. A common approach to study

the periodic orbit of such systems involves an analysis of the Poincaré map. Local

orbital stability is characterized by the stability of an associated “first-return map”

that describes the repeated passes of the system trajectories on a single, predefined

transversal hypersurface. This map relates one pass to another through a difference

equation, allowing for analysis of orbital stability and for design of feedback policy in

discrete-time.

Related to the Poincaré map analysis is the transverse coordinates and transverse

dynamics method [37, 38, 39], also known as the “Moving Poincaré section” method.

This construction provides a continuous description of the system’s dynamics as it

traverses along the periodic orbit, thus allowing for analysis of orbital stability and

for design of feedback policy in continuous-time.

7

1.2.2 Contributions

In this work, we provide the design, analysis, and implementation of controllers

for robotic locomotion. The contributions of this work are summarized below:

• Design two novel controllers for a reduced system,

• Estimate and compare the regions of attractions of these controllers,

• Provide an implementation of these controllers on the full system dynamics that

guarantee its stability,

• Provide an analysis of the impact map that yields an optimization procedure

to find energetically-preferable nominal walking gaits,

• Provide extensive simulation and partial experimental support for the theory.

This material has been accepted for publication in the ASME 2019 International

Design Engineering Technical Conferences & Computers and Information in Engi-

neering Conference (IDETC/CIE 2019).

8

CHAPTER 2

BACKGROUND

This chapter aims to provide the reader with the preliminary background to

formulate the optimization problem for mechanism design (Chapter 3) and to design

control laws for the rimless wheel actuated by a torso (Chapter 4).

Section 2.1 introduces the sums-of-squares (SoS) optimization technique, one

application of which is to certify the nonnegativity of polynomials over semialgebraic

sets (regions defined by polynomial inequalities). We use this technique to optimize

the design of robotic manipulators in Chapter 3 and to approximate the region of

attraction of dynamical systems in Chapter 4.

Section 2.2 provides an overview on a number of common techniques used to study

periodic motions of dynamical systems. Then, in conjunction with Section 2.3, which

gives an overview on the Linear Quadratic Regulator (LQR), these techniques are

used in Chapter 4 to devise control laws for the rimless wheel with torso.

2.1 Sums of Squares Optimization

The 17th of David Hilbert’s 23 “Hilbert problems” is

Given a multivariate polynomial that takes only non-negative values over

the reals, can it be represented as a sum of squares of rational functions?

9

The solution of this problem goes back to David Hilbert and Emil Artin [40]. This

branch of mathematics is called real algebraic geometry or real algebra. In this

section, we provide the necessary background on positive semidefinite matrices and

SoS polynomials. We emphasize the aspect of computing the SoS decomposition. The

interested reader can refer to [41, 42] for more information.

Definition 1 A polynomial p ∈ R[x] of degree d = η1 + · · ·+ ηn, ηi ∈ N, i.e.,

(2.1)p(x) =
∑

η1+···+ηn≤d

cηx
η1
1 · · ·xηnn

is a sum-of-squares if there exist a finite number of polynomials pi ∈ R[x] such that p

can be written as

(2.2)p(x) =
∑
i

p2i (x).

Note that if p(x) is SoS, then p(x) ≥ 0 ∀x ∈ Rn. Hilbert proved that not every

positive semidefinite polynomial can be written as a sum-of-squares. However, in

1927, Artin’s Theorem answered Hilbert’s seventeenth problem by stating that every

semidefinite polynomial is a sum-of-squares of rational functions [40]. This leads us

to the question: When can a polynomial be written as a sum-of-squares?

Theorem 2.1.1 [43] A polynomial p ∈ R[x] of degree 2d has a sum-of-squares

decomposition if and only if there exists a positive semidefinite matrix Q such that

(2.3)p(x) = m>(x)Qm(x),

where m is the vector of all monomials in x1, . . . , xn of degree less than or equal to d,

i.e. m(x) =

[
1 x1 x2 . . . xn x1x2 . . . xdn

]
. There exist

(
n+d
n

)
such monomials.

This representation theorem, based on the Gram matrix method, implies that

the set of sum-of-squares polynomials are parametrized by the (convex) set of posi-

tive semidefinite matrices. SoS programming is then an optimization problem that

10

searches for a positive semidefinite matrix Q that will ensure the nonnegativity of

p(x) for any x ∈ Rn while satisfying a set of affine constraints. Note that this is a

finite-dimensional, convex optimization problem, which can be solved efficiently via

semidefinite programming.

We are often interested in whether a polynomial p is positive semidefinite on only a

subset of Rn, which is described by inequalities of the form gi(x) ≥ 0, gi ∈ R[x], ∀i =

1, . . . ,m, i.e., the set S = {x ∈ Rn : gi(x) ≥ 0 ∀i = 1, . . . ,m}. We can pose this

problem as another semidefinite optimization problem by employing what is called

the S-procedure. Following [25], we have the following lemma

Lemma 2.1.2 A polynomial p ∈ R[x] is a sum-of-squares polynomial on the set S

if there exist SoS polynomials s0, s1, . . . , sm ∈ R[x] such that

(2.4)p(x) = s0(x) +
m∑
i=1

si(x)gi(x).

These results are especially interesting because there exist efficient numerical

algorithms, called semidefinite programming algorithms, which allow us to translate

these theorems to be solved on computer. Parrilo [42] established the connection

between the SoS decomposition of Theorem 2.1.1 and semidefinite programming.

A semidefinite program, which has the following form, may be interpreted as a

generalization of a linear program

(2.5)

minimize
x

c>x

subject to F0 +
k∑

i =1

xiFi � 0,

Ax = b,

where x ∈ Rk is the decision variable, c ∈ Rk, Fi = F>i ∈ Rm×m, A ∈ Rp×k and

b ∈ Rp. The inequality sign� designates negative semidefiniteness, i.e., the symmetric

11

matrix F0 +
∑k

i=1 xiFi has no positive eigenvalues. A semidefinite program with more

than 100, 000 variables can be efficiently and reliably solved with the help of interior

point methods in polynomial time and non-heuristic stopping criteria. An extensive

discussion of semidefinite programming and its applications can be found in [44, 25].

We bridge the gap between the Gram matrix method and semidefinite programming

by the following theorem

Theorem 2.1.3 [42] The existence of a sum-of-squares decomposition of a polyno-

mial in n indeterminates of degree 2d can be decided by solving a semidefinite program.

An example taken from [42] illustrates the theorem. Consider the polynomial in two

indeterminates of degree 4

p(x) = 2x41 + 2x31x2 − x21x22 + 5x42.

We want to check whether p can be written as a sum-of-squares polynomial.

By Theorem 2.1.1, we look for a matrix Q such that with the vector of monomials

m(x) =

[
x21 x22 x1x2

]>
we have

p(x) = m>(x)Qm(x)

= m>(x)

q11 q12 q13

q12 q22 q23

q13 q23 q33

m(x)

= q11x
4
1 + q22x

4
2 + q33x

2
1x

2
2 + 2q12x

2
1x

2
2 + 2q13x

3
1x2 + 2q23x1x

3
2.

Equating the coefficients leads to

q11 = 2, q22 = 5, q33 + 2q12 = −1, q13 = 1, q23 = 0.

We are left with one unknown parameter, q12 (or q33). Whether p ∈ R[x] is an SoS

polynomial or not is equivalent to the question whether a q12 exists such that Q � 0.

12

The feasibility of the following semidefinite program then would verify that p is a

sum-of-squares polynomial

Q =

2 0 1

0 5 0

1 0 −1

+ q12

0 1 0

1 0 0

0 0 −2

 � 0.

One solution to this feasibility problem is q12 = −3, which implies that p is indeed

an SoS polynomial. The author of this thesis uses the freely available Julia pack-

ages SumOfSquares.jl along with JuMP.jl and Mosek.jl to solve such semidefinite

optimization problems [45].

Finally, recall that a matrix P ∈ Rm×m is nonnegative definite if and only if P can

be factored as P = M>M . The same characterization can be made for matrices whose

entries are polynomials, i.e. P (x) ∈ R[x]m×m. We say that a symmetric polynomial

matrix P (x) ∈ R[x]m×m is positive semidefinite if P (x) � 0 for all x ∈ Rn. Further,

we define an SoS matrix as follows

Definition 2 [25] A symmetric polynomial matrix P (x) ∈ R[x]m×m, x ∈ Rn, is an

SoS matrix if there exists a polynomial matrix M(x) ∈ R[x]s×m for some s ∈ N, such

that P (x) = M>(x)M(x).

This definition reduces to the standard SoS notion when m = 1. An m × m

matrix is a representation of an m-variate quadratic form. Thus, an SoS matrix can

be interpreted in terms of a polynomial with m additional variables.

Lemma 2.1.4 [25] Let P (x) ∈ R[x]m×m be a symmetric polynomial matrix with

x ∈ Rn. Let p(x, z) := z>P (x)z be the associated scalar polynomial in m+n variables

[x; z], where z =

[
z1 · · · zm

]
.

13

1. The matrix P (x) is positive semidefinite if and only if p(x, z) is nonnegative.

2. The matrix P (x) is an SoS matrix if and only if p(x, z) is an SoS polynomial

in R[x; z].

This characterization of SoS matrices suggests that semidefinite programming can

also be used to verify whether a symmetric polynomial matrix is positive semidefinite.

We take advantage of this result to perform matrix norm minimization in order to

optimize the design of robotic manipulators, as elaborated in Section 3.4. We also

use this result to maximize the estimated volume of the region of attraction of control

systems, as elaborated in Section 4.2.4.

2.2 Analyzing Periodic Motions of Dynamical Systems

In this section, we provide an overview of a number of techniques that are used to

study periodic motions of dynamical systems. In particular, we study the concepts of

limit cycles, Poincaré section, the first return (Poincaré) map, transverse coordinates,

transverse dynamics and its linearization.

2.2.1 Limit Cycles

Consider the following general nonlinear control system described by:

(2.6)ẋ = f(x, u),

where x ∈ Rn is a state vector, u ∈ Rm is a vector of control inputs, and f is a

sufficiently smooth vector field. We assume that the control input is fixed, u = π(x),

which yields an autonomous dynamical system of the form

14

(2.7)ẋ = f(x).

where by abuse of notation we use the symbol f for the closed-loop system as well. The

solution (or flow), φ(·, x) : R→ Rn to the ordinary differential equation (ODE) (2.7)

starting at x ∈ Rn is said to be an orbit of the system. A periodic orbit or cycle is

an orbit that is topologically closed.

Definition 3 A solution x?(t) of (2.7) is a cycle or periodic orbit if there exists a

finite T > 0 such that
(2.8)x?(t) = x?(t+ T), ∀t ≥ 0.

We can think of a periodic orbit of a walking robot as a “walking gait”. If the robot

starts on this gait, it will be followed indefinitely. We want to know what happens

if the robot starts away from the walking gait. This leads us to the notion of limit

cycles, which characterizes if system trajectories near a periodic orbit converge to it.

The definition of limit cycles involves the ideas of ω- and α-limit points and sets.

Definition 4 [46] Given a trajectory γ : t 7→ x(t) of the system in (2.7). An ω-limit

point is a point p for which there exists a sequence tn →∞ such that

(2.9)lim
n→∞

x(tn) = p.

Similarly, if there exists a sequence tn → −∞ such that

(2.10)lim
n→∞

x(tn) = q,

then the point q is called an α-limit point of the trajectory γ. The set of all ω-limit

points of γ is called the ω-limit set of γ, denoted by ω(γ). The set of all α-limit points

of γ is called the α-limit set of γ and it is denoted by α(γ).

Using the notion of the ω- and α-limit set, we can now rigorously define the concept

of limit cycles.

15

Definition 5 [46] A limit cycle Γ of (2.7) is a periodic orbit which is the α- or

ω-limit set of some trajectory of (2.7) other than Γ itself. If a limit cycle Γ is the

ω-limit set of every other trajectory in its neighborhood, Γ is said to be an ω-limit cycle

or a stable limit cycle. Likewise, if Γ is the α-limit set of neighboring trajectories, Γ

is said to be an α-limit cycle or an unstable limit cycle.

This idea is not to be confused with trajectory tracking, which requires x(t) →

x?(t) as t→∞. Consider two solutions starting from different points on the periodic

orbit: x1(0) = x?(t1), x2(0) = x?(t2), with t1 6= t2. To certify asymptotic stability

of this system to a particular trajectory (trajectory tracking), we would require that

‖x1(t)− x2(t)‖→ 0 as t → ∞. But after each period, the two solutions will each

return to their starting points: x1(kT) = x?(t1) and x2(kT) = x?(t2), which cannot

be equal for all k because of the condition t1 6= t2 imposed earlier.

The following two subsections describe the methods used to certify stability of

limit cycles. These results, along with the results in Section 2.3, are used to a design

feedback control policy π(x) so that a limit cycle of the system in (2.6) is stable.

2.2.2 Poincaré Section and Poincaré Map

The construction of a Poincaré section and the Poincaré first-return map is a

useful technique to analyze the behavior of periodic orbits of dynamical systems. We

summarize these ideas following [47, 48].

Let γ be a periodic orbit of the n-dimensional system in (2.6). Let S be an n− 1

dimensional hypersurface transversal to the flow at a point p ∈ γ. If n(x) is the

normal vector to S at x, the transversality ensures that the condition f>(p)n(p) 6= 0

is satisfied, i.e., the hypersurface S is not tangent to the flow at p. The hypersurface

S, visualized in Figure 2.1(a), is referred to as the Poincaré section.

16

The Poincaré map P : S → S is a map from S to itself, obtained by following

trajectories from one intersection with S to the next. If xk ∈ S denotes the kth

intersection, then the Poincaré map relates xk+1 to xk through the difference equation

(2.11)xk+1 = P (xk).

If x? is a fixed point of P , i.e., P (x?) = x?, then a trajectory γ starting at x? on S

must return to x? after some time T . The trajectory γ is therefore a periodic orbit

for the original system. By looking at the behavior of P near this fixed point, we can

determine the stability of the orbit γ.

If P (x) exists for all x ∈ S, then this method converts stability analysis of limit

cycles to the stability analysis of fixed points of a map. It is typically impossible

to find a closed-form formula for P , but it can often be obtained through numerical

approximation. Once P is obtained, we can infer local stability of a limit cycle with

an eigenvalue analysis of the linearization of P . The limit cycle is considered locally

exponentially stable if all eigenvalues of the linearization of P have magnitude less

than one, i.e., |λi|< 1 for all i ∈ {1, 2, . . . , n− 1}.

One disadvantage of the Poincaré map analysis is that it lacks a continuous repre-

sentation of the system’s evolution along the periodic orbit, but rather focuses at only

a single section along the orbit. This limits its usefulness for control design for robot

locomotion. Furthermore, approximating the Poincaré map requires integration of the

dynamics over an entire cycle, which demands additional computational resources.

The following subsection introduces another set of tools for analyzing the stability of

limit cycles that overcomes these shortcomings.

17

2.2.3 Transverse Coordinates and Transverse Dynamics

To facilitate the analysis of the stability of a periodic orbit, we introduce a new

coordinate system adapted to the periodic orbit of the system. In these coordinates,

the said stability coincides with the stability of the origin in the “transverse coordi-

nates”. In order to define this adapted coordinate system, we start by explaining the

idea of a moving Poincaré section following [37, 38, 49].

Given a state x ∈ Rn in the original coordinate system, define τ , a scalar coor-

dinate aligned with the flow of the system along a periodic orbit x?. At each τ , we

define a hypersurface transversal to this orbit, resulting in a family of hypersurfaces

S (τ), mimicking the behavior of a Poincaré section that is moving along the orbit.

This is visualized in Figure 2.1b.

The remaining coordinates, denoted x⊥ ∈ Rn−1 and referred to as the transverse

coordinates, are defined such that they represent the location of the state x on each

S (τ) relative to the periodic orbit, with x⊥ = 0 implying that x = x?(τ). Once the

new coordinate system is constructed, we then define a smooth mapping Π : x 7→

(x⊥, τ) that relates original coordinate system to the transversal coordinates

(2.12)x⊥(τ) = Π(τ)x, x ∈ S (τ).

Having defined the mapping Π(·), and assuming that it is continuously differen-

tiable, the dynamics (2.6) can now be rewritten in terms of the new coordinate system

(x⊥, τ) as

(2.13a)τ̇ = f1(x⊥, τ, u)

(2.13b)ẋ⊥ = f2(x⊥, τ, u).

This construction gives us a continuous representation of the system’s evolution along

the periodic orbit, as opposed to at a single section when using the Poincaré map.

18

(a) Single Poincaré section [47] (b) Moving Poincaré sections [37]

Figure 2.1: Visualization of Poincaré section

It allows for the use of a Lyapunov function V (x⊥, τ) to prove that a periodic orbit

of the system is a stable limit cycle by requiring that V (x⊥, τ) vanishes everywhere

along the orbit, and is strictly positive everywhere away from the orbit.

Theorem 2.2.1 [50] Given a dynamical system ẋ = f(x) with x ∈ Rn where f is

continuous, x?(τ) is a periodic solution, and a smooth mapping Π : x 7→ (x⊥, τ) where

x⊥ vanishes on x?. If there exists a function V (x⊥, τ) such that the following hold:

V (0, τ) = V̇ (0, τ) = 0, ∀τ ,
V (x⊥, τ) > 0, ∀τ , ∀x⊥ 6= 0,

V̇ (x⊥, τ) < 0, ∀τ , ∀x⊥ 6= 0,

then the periodic orbit x?(t) is an asymptotically stable limit cycle.

The linearization of the transverse dynamics (2.13b), referred to as the transverse

linearization, is given by

(2.14)ẋ⊥ =

(
∂f2
∂x⊥

(x?(t), u?(t))

)
x⊥ +

(
∂f2
∂u

(x?(t), u?(t))

)
u.

Stabilization of this linearized system is equivalent to the local exponential stabi-

lization of the periodic orbit of the nonlinear system, and can be approached using

19

standard techniques from linear control theory. Furthermore, there is a standard

method for constructing Lyapunov functions for linear systems, which will be useful

for estimating the region of attraction, as elaborated in Section 2.3.3.

2.3 Linear Quadratic Regulator

The fundamental idea in optimal control theory is to cast the problem of finding a

control policy as the long-term optimization of some scalar cost function. Coming up

with an optimal control policy is equivalent to finding a solution to Hamilton-Jacobi-

Bellman (HJB) equation. However, finding such a solution is an intractable task for

most nonlinear systems. One important special case, where a closed-form solution

is available, is when the dynamics is linear and the cost function is quadratic in the

states. This control policy is called the Linear Quadratic Regulator (LQR).

In the previous sections, we considered the time-varying linearization of the trans-

verse dynamics and the Poincaré map. We make use of the continuous, time-varying

LQR to stabilize the linearization (2.14) of the transverse dynamics, and the discrete-

time LQR to stabilize the linearization of the Poincaré map.

2.3.1 Continuous-Time LQR

Consider the following continuous-time linear time-varying control system

ẋ = A(t)x+B(t)u,

with the finite-horizon cost function given by

J =

∫ t1

t0

(
x>Q(t)x+ u>R(t)u

)
dt, Q(t) � 0, R(t) � 0,

where � 0 denotes positive-semidefiniteness and � 0 denotes positive-definiteness.

The process of finding the optimal control policy involves finding the optimal cost-to-

20

go function J?(x), i.e., the cost that will be accumulated when running the optimal

controller, which satisfies the Hamilton-Jacobi-Bellman (HJB) equation:

0 = min
u

(
x>Q(t)x+ u>R(t)u+

∂J?

∂x
(A(t)x+B(t)u)

)
, ∀x.

It turns out that J?(x) = x>P (t)x, and that the optimal control policy is given as

u = −R−1(t)B>(t)P (t)x,

where P (t) is the solution to the differential Riccati equation

−Ṗ (t) = P (t)A(t) + A>(t)P (t)− P (t)B(t)R−1(t)B>(t)P (t) +Q(t),

and is obtained by solving the equation backward in time from t = t1. Although this

equation is quadratic in P (t), making its solution non-trivial, it is well known that

the equation can be solved efficiently and has a single positive-definite solution as

long as the system is controllable.

This result is used to design a control policy that stabilizes a periodic orbit based

on transverse linearization as described in Section 2.2.3.

2.3.2 Discrete-Time LQR

For the following discrete-time linear time-invariant system:

xk+1 = Axk +Buk,

with the infinite-horizon cost function

J =
∞∑
k=0

(
x>kQxk + u>k Ruk

)
, Q � 0, R � 0.

The result from discrete LQR algorithm gives the optimal control policy

uk = −
(
R +B>PB

)−1 (
B>PA

)
xk,

where P is the solution the discrete-time algebraic Riccati equation

21

0 = −P + A>PA−
(
A>PB

)> (
R +B>PB

)−1 (
B>PA

)
+Q.

This result is used to design a control policy that stabilizes a periodic orbit based

on the Poincaré map as described in Section 2.2.2.

2.3.3 Region of Attraction Estimation

When a feedback policy for a nonlinear system is designed based on its lin-

earization, the following question is of particular importance: what is the region

of attraction of the closed-loop system?

Definition 6 [51] Suppose the dynamical system (2.7) is asymptotically stable about

the origin. Let γ(t) be a solution of (2.7) that starts at the initial state x at time t = 0.

Then, the set of all points x such that γ(t) is defined for all t > 0 and limt→∞ γ(t) = 0

is the region of attraction of (2.7).

Region of attraction is then the neighborhood of the origin in which the controller

is guaranteed to stabilize the system. The following theorem characterizes approxi-

mations to the region of attraction of the system to the periodic orbit in terms of the

sublevel sets of a Lyapunov function.

Theorem 2.3.1 [37] For some compact set D := {(x⊥, τ) : V (x⊥, τ) ≤ ρ}, if V

satisfies the conditions in Theorem 2.2.1 for all (x⊥, τ) ∈ D, then D is an inner

approximation for the region of attraction of the system in (2.13) to the stable limit

cycle x?(τ).

If the feedback policy u(τ, x⊥) for (2.13) is designed using LQR, then there is a

natural candidate for the Lyapunov function V (x⊥, τ) = x>⊥Px⊥, where P , which

is positive definite, is the solution to the corresponding Riccati equation. In the

22

discrete-time case, P is the solution to the discrete algebraic Riccati equation. In the

continuous-time case, P = P (τ), the solution to the differential Riccati equation.

Once we fix a polynomial form for the Lyapunov function, we can formulate a

semidefinite optimization problem that looks for the best inner approximation to the

region of attraction as a sublevel set of this Lyapunov function. We start by sampling

a fine sequence {τi}, i = 1, 2, . . . , N such that τ1 = 0 and τN = T , where T denotes

the period of the periodic orbit. The following optimization problem is solved for each

fixed τi to arrive at the estimation of the region of attraction of the system (2.13).

maximize ρ

subject to (V (x⊥)− ρ)− λ(x⊥) dV (x⊥) is SoS,

λ(x⊥) is SoS,

where the term SoS denotes a sum-of-squares constraint on the corresponding poly-

nomial. In the discrete-time LQR case, dV denotes the change in V between each

successive pass of the trajectory at the Poincaré section. In the continuous-time LQR

case, dV denotes the Lie derivative of V along the trajectories of the transverse sys-

tem (2.13b). The formulations in this section are used in Section 4.2.4 to approximate

the region of attraction of each controller under study.

23

CHAPTER 3

CONVEX OPTIMIZATION OF ROBOTIC

MANIPULATOR DESIGNS VIA SUM-OF-SQUARES

PROGRAMMING

This chapter addresses the framework for casting the robotic manipulator design

as a convex optimization problem using Sum-of-Squares programming. All earlier

formulations of this problem used nonlinear optimization techniques, which have

poorer convergence and efficiency characteristics.

The organization of this chapter is as follows: Section 3.1 starts with the introduc-

tion to quantification of kinematic and dynamic performance for robotic manipulators.

Section 3.2 presents the derivation of kinematic and dynamic equations of a robotic

manipulator in polynomial form. In Section 3.3, we present the general optimiza-

tion problem that maximizes the two performance metrics presented in Section 3.1.

Lastly, in Section 3.4, we present a convex formulation of the optimization problem

introduced in Section 3.3. We provide a discussion of the results and conclusions of

the work in the last two sections.

3.1 Kinematic and Dynamic Performance Indices

To achieve robotic manipulators with low parasitic effects, both kinematic and dy-

namic performance need to be optimized. One way to enhance dynamic performance

24

is to design a device with low effective inertia so that the impedance values are kept

low. A disadvantage of this approach is that it may impose unwanted restrictions to

the overall workspace of the device. Similar effects of low inertia may be achieved

through active inertia cancellation. The applicability of this approach is limited by

actuator bandwidth, as well as issues with sensor and quantization noise.

A more clever way to quantify device performance is to consider how isotropic it

is. The relationship between the robot’s actuators and its end-effector varies with

position and direction. Mechanical isotropy refers to the absence of such variations.

A design with minimal variations, i.e. maximal isotropy, will result in a more uniform

performance throughout the workspace, while simultaneously making most efficient

use of the available actuators.

To measure the isotropy of a robotic manipulator, Salisbury and Craig [52] pro-

posed considering the condition number of the kinematic Jacobian matrix at a given

configuration. This measure locally characterizes the directional isotropy for both

force/motion transmission accuracy and actuator utilization. Since the objective

of the design problem is to minimize the parasitic effects of the manipulator over

the workspace, we are interested in a global performance metric that quantifies the

isotropy of robotic manipulators.

For kinematic performance, the metric we choose to use in this work is an extension

to the condition number method called the Global Isotropy Index (GII), as introduced

in [4]. A manipulator with maximal GII corresponds to a design with best worst-

case kinematic performance, increasing the efficiency of actuator utilization. GII is

expressed as

GII = inf
θ∈W

σ
¯
(J(α, θ))

σ̄(J(α, θ))
,

25

where W denotes the workspace, J the kinematic Jacobian matrix. σ̄, σ
¯

are the

largest and smallest singular values of J , α is a known function of link lengths, and

θ denotes configuration variables.

To optimize dynamic performance, we choose to use the worst-case dynamic

performance measure: the Global Dynamic Index (GDI), as introduced in [4]. The

eigenvalues of the mass matrix capture the relationship between actuator force/torque

and end-effector acceleration. The largest effect of mass on dynamic performance can

be measured by extracting the largest singular value of the mass matrix and finding its

maximum value over the workspace. GDI is calculated as the inverse of this quantity.

Optimizing GDI corresponds to finding a design with minimal inertial interference

by the system. GDI is mathematically expressed as

GDI = inf
θ∈W

1

1 + σ̄(H(α, θ))
,

where W denotes the workspace, H the mass matrix, σ̄ the largest singular value of

H, α is a known function of link lengths, and θ denotes configuration variables.

These performance metrics are chosen for ease of comparison with the literature.

The SoS optimization techniques provide enough flexibility to analyze mechanisms

with other performance metrics that are relevant to the designer.

3.2 Polynomial Manipulator Equations

The aim of this section is to present the necessary steps to derive the kinematic

Jacobian and the mass matrix of a robotic manipulator in polynomial form.

We start by defining indeterminates for the ith joint variable. If joint i is prismatic,

we let the indeterminate xi denote the joint displacement di. If joint i is revolute,

we define the indeterminates as xi = cos (θi) and yi = sin (θi), where θi is the angle

26

Table 3.1: Indeterminates for the two-link manipulator

x1 y1 x2 y2
cos θ1 sin θ1 cos θ2 sin θ2

of rotation of joint i. In this case, the additional constraint x2i + y2i = 1 must be

enforced to generate an accurate kinematic description of the manipulator. These

indeterminate definitions are summarized in Table 3.1.

Following [53], after these definitions of the indeterminates, all the homogeneous

transformations relating various frames become polynomial functions of xi’s and yi’s.

Consequently, every partial derivative of these position-level kinematic quantities will

also be polynomial functions of the same variables.

As an ongoing case-study for this thesis, we apply this method to the two-link

manipulator depicted in Figure 3.1. The two-link manipulator can be characterized

by the lengths l1, l2 of its links. In Section 3.3 we introduce a number of constraints

on the decision variables, which are functions of l1 and l2, to completely define the

workspace (see shaded area in Figure 3.1) over which the optimization is carried out.

3.2.1 Kinematic Jacobian and the Manipulability Matrix

The ith column of the kinematic Jacobian of a serial manipulator is given by

Ji =

zi−1 × (on − oi−1)

zi−1

 if joint i is revolute

zi−1
0

 if joint i is prismatic

,

where zi−1 is the axis of actuation of joint i − 1 and oi is the origin of frame i.

Since these are position-level kinematic quantities, they are all polynomial functions

27

θ1

θ2

l1

l2

Figure 3.1: Schematic of a two-link serial manipulator in elbow-out posture
The shaded area represents the workspace over which the optimization is carried out

of the indeterminates introduced above. The manipulability matrix is then defined

as M := JJ>.

For the two-link manipulator, using the definitions in Table 3.1, the kinematic

Jacobian is computed to be

(3.1)J =

−l1 sin θ1 −l2 sin θ2

l1 cos θ1 l2 cos θ2

 =

−l1y1 −l2y2
l1x1 l2x2

,
from which the manipulability matrix is computed to be

(3.2)M = JJ> =
2∑

k=1

 l2ky
2
k −l2kxkyk

−l2kxkyk l2kx
2
k

 .
Remark 3.2.1 Even for higher degree-of-freedom (DoF) manipulators, the kinematic

manipulability matrix is a linear function of the square of the link lengths provided that

28

the joint angles are defined as absolute angles. This fact allows for the formulation

of the mechanism design problem as a convex optimization problem.

3.2.2 Mass Matrix

The mass matrix of a robotic manipulator is a function of the rotation matrices that

relate each frame to the base frame as well as the kinematic Jacobian matrix. We

have already argued that these rotation matrices and the kinematic Jacobian are

polynomial functions of the indeterminates, implying that the mass matrix H(x, y)

is a polynomial function of the indeterminates as well.

By the operator norm definition of the largest singular value of a matrix, we have

σ̄(H) = ‖H‖2 . It is also well-known that the Frobenius norm of a matrix dominates its

two norm, i.e., ‖H‖2≤ ‖H‖F . In turn, the Frobenius norm of a positive semidefinite

matrix is dominated by its trace [54], i.e., ‖H‖
F
≤ tr(H). Thus, we have the chain of

inequalities

σ̄(H) = ‖H‖2 ≤ ‖H‖F ≤ tr(H) ≤ √r‖H‖
F
,

where r denotes the number of degrees-of-freedom (DoF) of the manipulator. The

last inequality follows from usual norm inequalities and the fact that the Frobenius

norm can also be expressed as the square root of the sum of squares of the eigenvalues

of H [54]. Then, it follows from matrix norm inequalities that

(3.3)σ̄(H) ≤ tr(H) ≤ rσ̄(H).

To construct the mass matrix from the kinetic energy of the planar two-link

manipulator, without loss of generality, we assume the center of mass of each link

is situated at the geometric center of the link. With this assumption, the mass

matrix is given by

29

(3.4)H =

 I1 + 1
4
ml21

1
2
m2l1l2 (x1x2 + y1y2)

1
2
m2l1l2 (x1x2 + y1y2) I2 + 1

4
m2l

2
2

 ,
where I1, I2 are the moments of inertia of the link about the axis perpendicular to the

plane of operation, m1,m2 are the masses of each link and m = (m1 + 4m2). Note

that, in this case, inequalities (3.3) hold with r = 2.

3.3 The Optimization Problem

To optimize kinematic and dynamic performance of a two-link planar manipu-

lator using the performance metrics discussed in Section 3.1, one can formulate an

optimization problem whose objective is to maximize GII and GDI simultaneously.

This implies that mechanism is optimally close to kinematic isotropy, while the

effective mass is simultaneously minimized. In standard (negative null) form, the

multi-objective optimization problem can be written as

(3.5)

maximize
α

F (α, β, x, y)

subject to G(α, β, x, y) ≤ 0

αl ≤ α ≤ αu,

where F is a column vector containing the objective functions that depend on the

design variables α, parameters β, summarized in Table 3.2, and x, y are the config-

uration variables. G represents the inequality constraints that also depend on the

design variables, parameters, and the configuration. Finally, αl = 0.1 and αu = 1.0

stand for the lower and upper bounds on the design variables, respectively. For the

two-link planar manipulator, these quantities are given by

30

F =

GII
GDI

 , G =

−y2
x1y2 − x2y1

x1x2 + y1y2 − ε

ε− x1x2 − y1y2
c>i α + di

, i = 1, . . . ,m,

where the first two elements of G force an elbow-out posture for the manipulator,

the next two elements prevent singular configurations upon selection of 0 < ε < 1,

and the last m elements are affine constraints on the decision variables. We choose 2

additional affine constraints, i.e., m = 2.

Table 3.2: Design variables α and parameters β

Symbol Definition Unit

α1 l21 squared length of link 1 m2

α2 l22 squared length of link 2 m2

β1 ε = 0.5 bound on |cos(θ1 − θ2)| −
β2 c1 =

[
1 1

]>
parameters for −

β3 c2 = −
[
1 1

]>
affine constraints −

β4 d1 = − 9
70

on the decision m2

β5 d2 = 1
10

variables m2

3.4 Methods

Theorem 2.1.3 states that SoS programming can be viewed as a special case of

semidefinite programming, which is simply a linear program over the cone of positive

semidefinite matrices. We need to formulate the optimization problem such that the

objective function is a linear function of the decision variables and the constraints

are linear matrix inequalities. The difficulty is that GII and GDI are defined in

terms of the singular values of the Jacobian and the mass matrices, respectively,

31

which are nonlinear and nonconvex functions of the decision variables. The workspace

constraints could also contain nonlinear terms. These issues must be addressed before

SoS programming techniques can be invoked.

3.4.1 Unconstrained semidefinite optimization of GII and GDI

We use matrix norm minimization technique [55] to address the nonconvexity of

the performance measure GII. Consider the problem

minimize
α ∈Rn

‖A(α)‖2 ,

where ‖·‖2 denotes the spectral norm, i.e. the maximum singular value. We use the

fact that ‖A(α)‖2≤ s if and only if AA> � s2I (and s ≥ 0) to express the problem

in the form

(3.6)
minimize
(α,s) ∈Rn+1

s

subject to sI − A(α)A(α)> � 0.

If the A(α)A(α)> is a linear function of α, then this is a semidefinite program.

We want to use this method to determine the maximum of the maximum singular

value of the Jacobian matrix, i.e., we want to substitute J for A. However, J is not

only a function of the decision variables, but also of the configuration of the manip-

ulator, that is, J = J(α;x, y). From Section 3.2 we know that the manipulability

matrix M = JJ> is a linear function of the decision variables α and a polynomial

function of the configuration variables x, y. This suggests a way to modify (3.6) to

determine the maximum of the maximum singular value of the Jacobian matrix as

follows

32

(3.7)
minimize
(α,s) ∈Rn+1

s

subject to sI −M(α;x, y) � 0.

While determining the nonnegative definiteness of the matrix sI −M(α;x, y) over

all (x, y) is an unwieldy problem, that of determining whether it is an SoS matrix

is not, by virtue of Lemma 2.1.4 of Section 2.1 on page 12. It states that replacing

the � condition in the constraint by a SoS condition turns this optimization to a

semidefinite program.

A similar procedure can be applied to maximize the minimum of the minimum

singular value of the Jacobian over the decision variables by negating the constraint

and objective function in (3.7). We can then find the global maximizer of GII by

solving the following semidefinite optimization problem

(3.8)
minimize
(α,s,t) ∈Rn+2

s− t

subject to sI −M(α;x, y) is SoS

M(α;x, y)− tI is SoS.

To incorporate the maximization of GDI within the semidefinite program we

create in the next subsection, we recall the discussion at the beginning of Section 3.2.2.

We notice that a natural linear function of the decision variables, whose minimization

will also minimize σ̄(H), thus maximizing GDI, is given by the trace of H.

Remark 3.4.1 Since tr(H) =
∑

i λi(H), minimizing the trace of H is equivalent to

minimizing the maximum value of the sum of the eigenvalues of H over the workspace.

33

3.4.2 Formulating the constraints

The semidefinite program (3.8) is not yet a faithful optimization problem because

it lacks the circle constraints x2i + y2i = 1, ∀i = 1, 2, and the workspace constraints,

G, presented in Section 3.3.

The circle constraints, the elbow-out posture constraints, G1, G2 and nonsingular-

ity constraints G3 and G4 of G are polynomial constraints, which can be embedded in

SoS programming by invoking the procedure described in Lemma 2.1.2. The last two

elements of G define affine constraints on the decision variables and can be directly

inserted into the final semidefinite program (3.9).

3.4.3 Multicriteria Optimization

Once the single criteria optimization problems have been cast as semidefinite

programs, we combine the two using the weighted-sum approach to generate the

Pareto-front. This involves solving the following semidefinite program for each value

of the parameter 0 ≤ γ ≤ 1.

(3.9)

minimize
(α,s,t) ∈Rn+2

γc>α + (1− γ)(s− t)

subject to sI −M(α;x, y) is SoS
M(α;x, y)− tI is SoS
G(α;x, y) ≤ 0
αl ≤ α ≤ αu
x2i + y2i = 1, ∀i = 1, 2.

3.5 Optimization Results

Table 3.3 presents the results of the SoS optimization algorithm for the single

objective problems, for best kinematic (γ = 0) and best dynamic isotropy (γ = 1),

34

Table 3.3: Results of independent optimizations with respect to GII and GDI

Best Design for Best Design for
Unit

Kinematic Isotropy Dynamic Isotropy
GII 0.57735 0.28021 −
GDI 0.89354 0.95012 −
l1 0.22361 0.10000 m
l2 0.22361 0.30000 m

respectively.

To characterize the trade-off between the single objective solutions, a Pareto-

front curve for the bi-objective optimization problem is constructed in Figure 3.2.

Schematics of the mechanism at the two extremes, i.e., best kinematic and dynamic

isotropy, and at an approximately equal-trade-off-point are shown in the subplots

within Figure 3.2. It turns out that whenever γ > 0.5, there is very little trade-off

between GII and GDI. Cubically spacing γ within [0, 0.5] results in a relatively

uniform sampling of the Pareto-front curve. Note that any point on this curve is a

non-dominated solution. The designer is free to choose to “best” design parameters

respective to his or her requirements.

For performance comparisons with regards to computational demands, the multi-

objective problem with 101 distinct values of γ took approximately 2 minutes to

complete using a single mobile Intel i7− 7700HQ processor operating at 3.80GHz. In

comparison, when the culling algorithm was used to obtain globally optimal results

for a symmetric five-bar parallel mechanism in [2], it took the authors approximately

16 hours to find 30 distinct values on the Pareto-front on a 3.40GHz Intel Xeon

processor in parallel using 8-cores. Thanks to the lack of discretization requirement in

SoS methods, both computation time and the solution accuracy improve. Moreover,

the method scales to higher DoF manipulators in polynomial time as opposed to

35

Figure 3.2: Pareto-front curve generated via sums-of-squares optimization
Subplots: Comparisons of results for best GII (diamond), nontrivial trade-off between GII and

GDI (square), and best GDI (star).

exponential. Since the symmetric five-bar linkages can be viewed as a two-link

serial manipulator with an additional constraint at the end-effector, the sums-of-

squares programming algorithm should result in orders of magnitude improvement

in computation time. These results serve as a strong indication that the application

of framework presented in this case study to more complex mechanisms promises

substantial improvements in accuracy and computational performance.

3.6 Conclusions

This chapter presents a formulation of the design optimization of robotic ma-

nipulators, which was previously solved via nonlinear optimization techniques, as

a convex optimization problem by employing sums-of-squares optimization. As a

result, we are able to find the globally optimal solution for the single objective

36

problems with arbitrarily high precision (up to machine precision). Interior-point

methods are used to obtain the numerical solution to a SoS optimization problem

very efficiently. They scale exceptionally well with increasing number of decision

variables in contrast to other methods, such as branch-and-bound algorithms, which

are able to find the globally optimal solution. In future work, the same technique

can be used to optimally design parallel mechanisms, which additionally require the

satisfaction of loop equations.

37

CHAPTER 4

ORBITAL STABILIZATION OF A TORSO-ACTUATED

RIMLESS WHEEL

This chapter addresses the development of control systems for a rimless wheel

with torso. The organization of this chapter is as follows: Section 4.1 presents the

modeling of the robot as a hybrid dynamical system. Section 4.2 brings together the

ideas from Section 2.2 and Section 2.3 to design two types of control systems for the

robot. This section also presents a method to estimate the regions of attraction of the

two controllers using Sum-of-Squares programming techniques. Section 4.3 presents

and compares the simulation results and the estimated regions of attraction of the two

controllers. Section 4.4 provides some experimental results that support the theory

developed in this chapter.

4.1 System Model

The robot, depicted in Figure 4.1, consists of two parts, first of which is the

classical rimless wheel and the second of which is a torso attached to the rimless

wheel at its center. The rimless wheel consists of n = 10 massless spokes, each of

length l1. The rimless wheel has mass m1, which is concentrated at the hip. A point

mass m2 is attached to the hip through a massless rod of length l2 and constitutes

the torso. We place a motor between the torso and the hip and actuate the variable

38

γ

2

x

y

Σa

x

y

Σ0

Σ1 x

y

g

Figure 4.1: Schematic of rimless wheel with torso
This is depicted with n = 8 spokes to prevent clutter. The angle ϕ is controlled. The origin of Σ1

is placed at the point of contact between the ground and the spoke.

ϕ, defined as the angle between the normal vector that penetrates the terrain and the

vector that emanates from the hip and is directed to the point mass m2. The position

of the hip is characterized by the angle θ, which is defined between the normal vector

that penetrates the terrain and the vector that emanates from the hip and is directed

to the point of contact. A downhill terrain is characterized by a ramp slope, γ > 0.

Without loss of generality, we assume that the wheel walks from left-to-right, that

is, for walking we must have θ̇(t) < 0 for all t > 0. Finally, we denote half the angle

between two spokes by α = π
n
.

The rimless wheel undergoes phases of continuous flows and discrete transitions,

resulting in a hybrid dynamical system with two modes. Its configuration space is

Q = T2, the two-torus. The state space is then the tangent bundle of the configuration

space, denoted by TQ.

39

4.1.1 Swing model – continuous dynamics

We derive the continuous dynamics of the system via the Lagrangian approach.

The kinetic and potential energies of the system are given by

K =
1

2

2∑
i=1

mivi · vi +
1

2

2∑
i=1

ωi · Iiωi,

P =
2∑
i=1

mig p0,i · e2,

where {vi}21 are the linear velocities of the hip, and the tip of the torso; {ωi}21 are

the angular velocities of the wheel and the torso with respect to and expressed in the

inertial frame; {p0,i}21 are the position vectors from the origin of the inertial frame

to the centers of mass of the wheel and the torso, {mi}21 and {Ii}21 are masses and

the moments of inertia of the wheel and the torso about their centers of masses,

respectively. The magnitude of the gravitational acceleration is denoted by g while

its opposite direction is given by −e2. In coordinates (θ, ϕ) (see Figure 4.1), the

Lagrangian is given by

L = K − P
=

1

2

(
I1 +mtl

2
1

)
θ̇2 −m2l1l2cθϕθ̇ϕ̇+

1

2

(
I2 +m2l

2
2

)
ϕ̇2 −mtgl1cθγ +m2gl2cϕγ,

where mt = m1 + m2, cab := cos (a− b) and sab := sin (a− b), with a and b taking

values in {θ, ϕ, γ}. Defining q = (θ, ϕ) and writing the Euler-Lagrange equations

corresponding to this Lagrangian yields the classical robot dynamics

(4.1)M(q)q̈ + C(q, q̇)q̇ +G(q) = Bu,

where B =

[
−1 1

]>
and

40

M(q) =

 I1 +mtl
2
1 −m2l1l2cθϕ

−m2l1l2cθϕ I2 +m2l
2
2

 ,
C(q, q̇) = m2l1l2sθϕ

0 −ϕ̇

θ̇ 0

 ,
G(q) = g

−mtl1sθγ

m2l2sϕγ

 ,
Adding together each equation in (4.1) and setting ϕ̇ ≡ 0 in this equation yields what

we will call the reduced equations of motion.

(4.2)m̃(q)θ̈ + c̃(q, θ̇)θ̇ + g̃(q) = 0,

where

m̃(q) = I1 +mtl
2
1 −m2l1l2cθϕ,

c̃(q, θ̇) = m2l1l2sθϕθ̇,

g̃(q) = −mtgl1sθγ +m2gl2sϕγ.

This reduced model, with configuration space Q = S1, where S1 stands for the

circle as a topological space, neglects the transient response of the torso, whose angle

ϕ is viewed as the control input.

4.1.2 Impact model – discrete transition

At heelstrike, the impulsive reaction force from the ground is applied at the end of

the swing leg. The angular momentum of the whole system about the swing foot is not

affected by this reaction force [56], implying a conservation law relating the pre-impact

and post-impact velocities of the system. Similarly, the impact force affects the torso

through the hip. Therefore, the angular momentum of the torso about this point

is conserved through the heelstrike. Combining these two observations yields the

41

impact map for the system. Representing the state of the system in coordinates by

x := (q, q̇) = (θ, ϕ, θ̇, ϕ̇), the impact map, ∆ : TQ → TQ, is given by

(4.3)x+ = ∆(x−) = Ξ(q)x−,

where R4×4 3 Ξ(q) = diag{Ξp,Ξv} has a block diagonal structure with Ξp = diag{−1, 1}

and

Ξv(q) =

ξ1(ϕ) 0

ξ2(ϕ) 1

 ,
∣∣Ξ+

v

∣∣ = I1I2 + I1m2l
2
2 + I2mtl

2
1

+m2l
2
1l

2
2

(
m1 +m2 sin (α− ϕ)2

)
,∣∣Ξ+

v

∣∣ ξ1(ϕ) = I1I2 + I1m2l
2
2 +
[
I2mtl

2
1 +m2l

2
1l

2
2

(
m1 +

m2

2

)]
cos (2α)− 1

2
m2

2l
2
1l

2
2 cos (2ϕ),∣∣Ξ+

v

∣∣ ξ2(ϕ) = m2l1l2
[
I1 (cos (α− ϕ)− cos (α + ϕ))

+mtl
2
1 (cos (2α) cos (α− ϕ)− cos (α + ϕ))

]
.

For the reduced model, we again set ϕ̇ ≡ 0, which reduces these equation to yield

the reduced impact map, Ξr(q) = diag{−1, ξr(q)}, where

(4.4a)

θ+
θ̇+

 = Ξr(q)

θ−
θ̇−

 ,
(4.4b)ξr(q) =

I1 +mtl
2
1 cos (2α)−m2l1l2 cos (α + ϕ)

I1 +mtl21 −m2l1l2 cos (α− ϕ)
.

4.1.3 Hybrid model

The overall model of walking is obtained by combining the swing phase model

and the impact model to form a system with impulse effects. For the full model with

x = (q, q̇), we have

42

(4.5)Σ :

ẋ = f(x, u) if x− /∈ S

x+ = ∆(x−) if x− ∈ S,

where the switching set is chosen to be

S :=
{
x ∈ TQ : pv2(θ) = 0, ph2(θ) > 0

}
.

Here ph2 and pv2 denote the x- and y- position of the swing leg with respect to the

auxiliary frame, Σa, (see Figure 4.1). In the equations of motion (4.5), the flow vector

field f is taken from equation (4.1). The impact map is given by ∆(x) = Ξ(q)x.

For a preliminary controller design, it will be convenient to use the reduced model,

where we view the torso angle ϕ as the control input and reduce the states to x =

(θ, θ̇). In this case, the flow vector field in (4.5) is taken from equation (4.2) and the

reduced impact map is given by ∆(x) = Ξr(q)x.

4.2 Control Design

In this section, we used the techniques described in Section 2.2 and Section 2.3 to

present two novel controllers: an inherently discrete-time and an inherently continuous-

time, derived from the reduced model and stabilized on the full system. We describe

how to estimate the regions of attraction of these controllers and present an analysis

that leads to further performance improvements. An overview of the control design

procedure is given in Algorithm 1.

4.2.1 Discrete-Time (DT) Controller

For this type of controller, we seek to set the torso angle at a particular Poincaré

section that we choose to be S = {x ∈ S1 × R : θ = 0}. The torso angle is then kept

constant throughout the swing phase.

43

Algorithm 1: Controller Design Process

Input: States of the robot in the reduced model, x = (θ, θ̇)
Output: Desired torso angles ϕref, stabilizing a nominal walking gait of the

reduced model
1 x? ← Find a nominal limit cycle
2 if Discrete-time controller then do
3 Define a single Poincaré section along x?

4 P ← approximation of the Poincaré map
5 K ← discrete LQR controller that stabilizes the fixed point of P

6 ϕref ← ϕ0 +K(θ̇ − θ̇?)
7 else if Continuous-time controller then do
8 Define a family of Poincaré sections along x?, each parametrized by τ
9 Define a transverse coordinate x⊥

10 Transform original coordinates to (x⊥, τ) coordinates
11 Compute the nonlinear dynamics of the transverse system
12 Linearize the transverse dynamics
13 k(θ)← LQR controller to stabilize the x⊥ system

14 ϕref ← ϕ0 + k(θ)(θ̇ − θ̇?)
15 return ϕref

The set polynomial functions forms a basis for the space of continuous functions

from R to R. We use this fact to approximate the Poincaré map by a polynomial of

the form

(4.6)P (y, u) =
∑

η1+η2≤m

αηy
η1uη2 ,

where η = (η1, η2) is a multi-index, that is, a 2-tuple of non-negative integers, whose

sum is less than or equal to m, the degree of the approximating polynomial. Note

that P : U ⊆ S → S is a map from a subset of the Poincaré section to the Poincaré

section. Here y = θ̇− θ̇? is the coordinate along the Poincaré section with θ̇? denoting

the nominal wheel velocity along a nominal walking gait, and u is the torso angle, ϕ.

We invoke the least squares estimation technique to estimate the coefficients,

{αη}, of this polynomial. The estimation is performed by generating target values,

θ̇target on the Poincaré section, by simulating forward in time a range of initial values

44

0 < θ̇ < −π and γ < ϕ < π
2

+ γ. We remove from data the failed simulations due to

stumbling or running. These target values are then compared with the output of the

approximation of the Poincaré map and the coefficients that minimize the discrepancy

are selected. In other words, {αη} are found by solving the following minimization

problem:

minimize
αη

‖P (θ̇, ϕ)− θ̇target‖2.

We use a linear approximation to derive the discrete-time controller and test the

controller against a second-order approximation to avoid potential overfitting. This

linear approximation of the Poincaré map allows for the use of the mature theory of

linear systems, and here we choose to utilize a discrete-time LQR controller for the

discrete linear system described by

(4.7)yk+1 = P (yk, uk) = α1,0yk + α0,1uk.

4.2.2 Continuous-Time (CT) Controller

Following the methods described Sections 2.2.3 and [57, 37], we present the deriva-

tion of a continuous-time (CT) controller for the reduced system. In this case, instead

of sticking to a particular Poincaré section, we choose a family of Poincaré sections,

one for each parameter τ ∈ R, along a periodic orbit of the system. As θ is a

monotonically decreasing function of time along a periodic orbit, we use this state

variable to parametrize the Poincaré sections, i.e. t = τ(θ), where t denotes time.

Using this parametrization, we have the following family of Poincaré sections

S (θ) =
{
x ∈ S1 × R : θ = c, for some c ∈ [−α, α]

}
.

This family of Poincaré sections can also be described as a family of hyperplanes

defined as follows

45

S (θ) =
{
y ∈ R2 : z> (y − x?(θ)) = 0

}
,

where z =

[
−1 0

]>
and x?(θ) is a periodic orbit, i.e., x?(t) = x?(t + T) with

ẋ?(t) 6= 0, ∀t ∈ [0, T). We construct a coordinate system on S (θ) by choosing the

basis on this subspace as

[
0 −1

]>
. A projection operator Π(θ) onto this space is

then defined. as Π(θ) =

[
0 1

]
. This construction defines a change of coordinates

x 7→ (x⊥, τ), where τ represents which of the transversal surfaces S (τ) the current

state x inhabits, and the vector x⊥ is the “transversal” state representing the location

of x within the hyperplane S (τ), with x⊥ = 0 implying that x = x?(τ). The

transverse coordinate under this construction is determined by x⊥ = Π (y − x?(τ))

for any y ∈ S (τ).

The transverse dynamics for the rimless wheel with torso is given by

(4.8a)ẋ⊥ = Πf
(
x?(τ) + Π>x⊥

)
− Πf (x?(τ)) τ̇ ,

(4.8b)τ̇ =
z>f

(
x?(τ) + Π>x⊥

)
z>f (x?(τ))

.

To derive the CT controller, we first compute the linearization of the transverse

dynamics (4.8).

(4.9)˙δx⊥ = a(t)δx⊥ + b(t)δu,

where

(4.10a)a(t) = Π
∂f

∂x
(x?(t)) Π> − Πf (x?(t))

∂τ̇

∂x⊥

∣∣∣∣
x⊥=0

,

(4.10b)b(t) = Π
∂f

∂u
(x?, u?) .

For evaluating the right-hand sides of these expressions, first we select a limit cycle

using the methods discussed in Section 4.2.5. The limit cycle thus provided is then

interpolated to be a function of time and is inserted into equation (4.10).

46

We follow this procedure up by solving the differential Riccati equation corre-

sponding to this linear time-varying (LTV) system and come up with an optimal

gain such that δu(t) = k(t)δx⊥(t). We apply this feedback control as a function of

the phase variable θ rather than time t, by setting k(t) = k ◦ τ(θ). This renders

the overall closed-loop system autonomous rather than time-varying, which simplifies

further stability analyses.

4.2.3 Implementation of the Controllers

The controllers we have derived so far find desired torso angles, which would

stabilize a nominal walking gait for the reduced model. The DT controller yields

a torso angle to be kept constant for each step, whereas the CT controller yields a

time-varying, continuous reference torso angle. We will call both reference signals

ϕref henceforth.

In this short subsection, we describe how to make the torso angle ϕ exponentially

track ϕref . For this purpose, we employ the now-standard method of partial feedback

linearization [58] on the equations (4.1). We solve the first equation in (4.1) for θ̈ and

substitute it into the second to get the following equation

∆22ϕ̈+ h(q, q̇) = bu,

h(q, q̇) = c21θ̇ −m>12m−111 c12ϕ̇+ g2 −m>12m−111 g1,

where ∆22 is the Schur complement of the block m22 of the matrix M , and b =

1 +m>12m
−1
11 . Expanding the expression for b, one finds out that it vanishes nowhere.

Thus, we can set

(4.11)u =
1

b
(h−∆22 (kp(ϕ− ϕref) + kd(ϕ̇− ϕ̇ref))) ,

which is well-defined on all of the state-space. Here kp and kd are positive control

gains. Since ϕref = ϕ0 +k(θ)(θ̇− θ̇?), this implies on the nominal limit cycle, ϕ = ϕ0.

47

Combined with Proposition 2, which is given in Section 4.2.5 on page 50, this implies

that the perturbation to the reduced dynamics of the motion of the torso is a vanishing

perturbation that is Lipschitz in a neighborhood of x⊥ = 0. Thus by Lemma 9.1

of [51], this implies that the full system is locally exponentially stable to the nominal

limit cycle.

4.2.4 Region of Attraction Estimation

We have devised two controllers for the rimless wheel with torso. Both of these

controllers are derived from the linearization of a relevant dynamical quantity. It is

then of interest to quantify the regions of attraction of these controllers. We solve

this estimation problem by casting it as the following sum-of-squares program.

(4.12)

maximize ρ

subject to (V (y)− ρ)− λ(y) dV (y) is SoS,

λ(y) is SoS,

where y = θ̇ − θ̇? and the term SoS implies a sum-of-squares constraint [59]. We

pick the Lyapunov function as V (y) = py2. In the discrete-time case, p is a positive

constant and dV (y) is the change in V between successive visits to the Poincaré

section. In the continuous-time case, p is a positive function of the angle θ, dV (y)

is the Lie derivative of V (y) along the trajectories of the system (4.2). The quantity

p is obtained by solving the corresponding Riccati equation. This equation is either

associated with a second-order estimation of the Poincaré map (4.6) or the continuous

flow (4.2). In the continuous-time case, we discretize the variable along the limit-cycle,

and solve a family of sum-of-squares programs to generate the values of p(θ). The

48

solution of optimization problem (4.12) gives an inner estimation of the region of

attraction as Ωr =
{
x ∈ TQr : |y|<

√
ρ
p

}
.

4.2.5 Impact Map Analysis and Controller Improvements

The control laws studied so far perform reasonably well; however, the states

typically jump away from the desired manifoldM = {ϕ−ϕref = 0} at the heelstrike.

A considerable control effort must then be expended so that ϕ approaches ϕref again.

To remedy this situation, we analyze the impact map further to devise a family of

methods to modify ϕref in a desirable manner.

From the form of the impact map Ξ in equation (4.3), we observe that the post-

impact torso velocity ϕ̇+ equals its pre-impact value, ϕ̇−, plus the term ξ2(ϕ)θ̇−.

This suggests a robust method that precludes the impact event from disturbing the

convergence ϕ→ ϕref :

1. Find ϕ? such that ξ2(ϕ
?) = 0, ϕ? ∈ [γ, π

2
+ γ]

2. Find a nominal limit cycle x? so that ϕref = ϕ?,

3. Compute the transverse dynamics and the accompanying time-varying LQR

closed-loop controller,

4. Have ϕ track ϕref by using the control law (4.11).

In fact, we can take this observation one step further and find a family of methods

that will perform favorably to a näıve nominal limit cycle selection. To that end,

consider replacing point (1) above by the following steps:

(1a) Pick a function f(Ξ) of the impact map to optimize, e.g., no change in post-

impact torso velocity, least decrease in post-impact wheel velocity, etc.,

49

(1b) Perform the optimization to find the optimizer ϕ?.

The search for nominal limit cycle in step (2) may be conducted by using a

nonlinear solver to find the fixed point of the Poincaré map P (·, ϕ?) : R → R. The

values of the Poincaré map are obtained by numerically simulating the reduced system

forward in time for a single step.

If the optimization problem in (1b) is unconstrained, then there may exist no

nominal limit cycle for the optimizer ϕ? (i.e., the rimless wheel stumbles and falls

back on the pre-impact stance spoke). In this case, the optimization can be repeated

with an increased lower bound for ϕ until such a nominal limit cycle found. If any

nominal limit cycle exists, this procedure will guarantee an optimal solution thanks

to the following two propositions, which jointly show that increasing ϕ will increase

the walking speed |θ̇| whenever the speed is small.

Proposition 1 For the reduced system (4.2), θ̇ is a decreasing function of ϕ for small

|θ̇| and γ ≤ ϕ ≤ π
2

+ γ.

Proof. Straightforward calculation shows that

d

dt

∂

∂θ̇

(
1

2
m̃(q)θ̇2

)
= m̃(q)θ̈ + c̃(q, θ̇)θ̇ = −g̃(q).

Integrating both sides over time yields

m̃(q(t))θ̇(t) = mtgl1

∫ t

0

sin (θ(σ)− γ) dσ −m2gl2

∫ t

0

sin (ϕ− γ) dσ.

Differentiating both sides with respect to ϕ we find

∂θ̇

∂ϕ
= −m2l2

m̃(q)

(
g cos (ϕ− γ)t+ l1 sin (ϕ− θ)θ̇

)
.

Since the coefficient on the right hand side is negative and the continuous flow takes

a finite amount of time (t > 0), we deduce that θ̇ is a decreasing function of ϕ as long

as |θ̇| is bounded and small.

50

The above proposition makes sense as long as we can prove that θ̇ is bounded. This

is true with a mild assumption on ϕ.

Proposition 2 The speed |θ̇| of the rimless wheel under the reduced model (4.2) is

finite as long as ϕ > α.

Proof. Consider the Lyapunov function candidate

V (θ, θ̇) =
1

2
m̃(q)θ̇2 +mtgl1 (1 + cos (θ − γ)) .

Taking the Lie derivative along the solutions of (4.2) and manipulating gives

V̇ = m2l2θ̇

(
l1
2

sin (ϕ− θ)θ̇2 − g sin (ϕ− γ)

)
.

Assuming θ̇ < 0, V̇ < 0 whenever l1
2

sin (ϕ− θ)θ̇2 ≥ g sin (ϕ− γ). For sufficiently

large |θ̇|, this inequality is satisfied. Since the impact map ∆ contracts |θ̇| as well, we

conclude that |θ̇| is finite.

As an example of the above procedure, consider the problem of stabilizing a

walking gait that requires the least energy to maintain. In the absence of friction,

the system loses energy through the impact events. In particular, observe that

Ξ2(q;α)→ I as α→ 0, which implies a continuum of spokes, i.e., a circular (rimmed)

wheel. When α > 0, on the other hand, it is always the case thatH(q, q̇) > H◦∆(q, q̇),

where H denotes the total energy of the system. It follows that the closer Ξ2 is to the

identity map, the smaller is the energy loss of the walking gait. Therefore, we pose

and solve the following following optimization problem to come up with a desired

nominal torso angle

(4.13)
minimize

ϕ
‖I − Ξ2(ϕ)‖2

F

subject to γ < ϕ <
π

2
+ γ,

where ‖·‖
F

denotes the Frobenius norm of a matrix. For this particular system, this

objective function can be expressed as ‖I − Ξ2(ϕ)‖2
F

= (1− ξ1(ϕ))2 + ξ22(ϕ).

51

Remark 4.2.1 Note that Ξ2 also depends on the inertial parameters and the link

lengths. Although we do not pursue it here, one can also cast the energetically-optimal

walking problem into a mechanism design problem. One would seek to choose the spoke

length and the torso length such that ‖I − Ξ2(ϕ)‖2
F

is uniformly minimized.

Remark 4.2.2 Extensive simulation studies show that even if the desired nominal

gait is not selected such that the nominal torso reference angle equals ϕ?, where ϕ?

is the angle that minimizes energy loss at impact, it is energetically more efficient

to smoothly deform the reference from ϕref to ϕ? as the walking gait nears heelstrike

(use any smooth homotopy from the function ϕref : TQ → S1 to the constant signal

ϕ? : TQ → ∗).

4.3 Simulation Studies

We present and compare simulation results for the controllers we discussed in the

previous Section 4.2. We obtained the simulation results using a custom software

written in the programming language Julia. The parameters we use for the simula-

tions are selected to match an actual implementation of the robot and are summarized

in Table 4.1.

4.3.1 Discrete-Time (DT) Controller

To derive the DT controller, we first obtain the approximation of the Poincaré

map as described in Section 4.2.1. With the system parameters given in Table 4.1,

the coefficients, αη of the Poincaré map are presented in Table 4.2. We then find the

nominal limit cycle by solving the optimization problem described in Section 4.2.5.

52

Table 4.1: Parameters of the system

(l1, l2) [m] (m1,m2) [kg] (I1, I2) [kg ·m2]
(0.26, 0.05) (2.32, 4.194) (0.0784160, 0.0380256)

Table 4.2: Coefficients of Poincaré map approximation

α0,0 α1,0 α0,1 α2,0 α0,2 α1,1

−0.842 0.498 −1.813 −0.0567 0.623 −0.183

The angular velocity of the wheel at θ = 0 on the nominal limit cycle is computed to

be θ̇? = −0.65 [rad
s]. The corresponding nominal torso angle is ϕ0 = 18.26◦.

For the computed nominal limit cycle, the linear portion of the estimated Poincaré

map yields a DLQR controller gain of K = −0.212 [s]. The reference torso angle each

time the reduced system hits this section is given by ϕref = ϕ0 +K(θ̇ − θ̇?).

The torso position so generated is taken as a reference, which is asymptotically

stabilized for the full system as described in Section 4.2.3. To generate the simulation

results shown in Figure 4.3, we used the initial condition xinitial = (θ, ϕ, θ̇, ϕ̇) =

(0, π
2

+ γ, 1
2
, 0), where the wheel starts moving in the reverse direction. The response

of the system under the DT controller is shown by the dotted, diamond, red curves.

4.3.2 Continuous-Time (CT) Controller

The implementation of CT controller parallels that of the DT controller. We still

derive a nominal limit cycle but this time interpolate it as a function of time and

subsequently the wheel angle θ. We use the same nominal limit cycle characterized

by θ̇? = −0.65 [rad
s] at θ = 0 with ϕ0 = 18.26◦.

Using a numerical interpolation of the nominal limit cycle, we derive the transverse

linearization, given by the functions a(t) and b(t) in equation (4.9). Figure 4.2 shows

53

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

−5.0

−2.5

0.0

2.5

5.0

Transverse linearization

a(θ)

b(θ)

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

θ [rad]

0.2

0.4

0.6

0.8

k
◦τ

(θ
)

Time-varying LQR gain

θ[r
ad
]

−0.3
−0.2

−0.1
0.0

0.1
0.2

0.3

θ̇[rad/s]
−3.0−2.5−2.0−1.5−1.0−0.50.00.5

ϕ
ref [ra

d
]

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

Reference torso angle

Figure 4.2: Continuous-time Controller Computation
Top left: Transverse state and input functions a(θ), b(θ). Bottom left: the optimal control gain

k(θ). Right: the reference torso angle, which is computed by ϕref = ϕ0 + k(θ)(θ̇ − θ̇?).

the transverse linearization, the time-varying LQR gain k and the corresponding

reference torso angle ϕref , expressed as functions of θ and θ̇.

The full system uses the inverse dynamics controller (Section 4.2.3) to exponen-

tially steer ϕ to this ϕref . For ease of comparison with the DT controller, we start the

system at exactly the same initial condition even though the CT controller affords to

be started at an even more adverse initial condition (such as a larger positive initial

wheel velocity, see Section 4.3.3). The behavior of the full system dynamics under

the CT controller is shown in Figure 4.3 as the solid, triangle, blue curves.

We can use the CT controller to smoothly stabilize on terrains with varying slopes

as well. The animation for such a simulation may be viewed at https://youtu.be/

mRcX6S_rvFE.

54

0 5 10 15 20 25 30

−1.5

−1.0

−0.5

0.0

0.5

1.0

|θ̇
−
θ̇⋆

|
[r
ad
/s
]

Error from the nominal limit cycle

Discrete control

Continuous control

0 5 10 15 20 25 30
Walking step

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

|θ̇
−
θ̇⋆ a

ct
|
[r
ad
/s
]

Error from the actual limit cycle

Discrete control

Continuous control

Figure 4.3: Convergence of the DT and CT controllers
Top: convergence to the nominal. Bottom: convergence to actual limit cycles.

4.3.3 Comparison of the CT and DT Controllers

The top plot in Figure 4.3 shows the convergence of each controller when applied

to the full system. The results reveal that the CT controller tracks the nominal limit

cycle that was derived from the reduced model much more closely. The DT controller

converges to a completely different limit cycle, which walks much faster than the

nominal limit cycle.

The bottom plot in Figure 4.3 shows the transient response of the controllers

as they converge to their respective actual walking gaits. We observe that the CT

controller outperforms the DT controller with a faster convergence.

Figure 4.4 depicts the inner approximations of the regions of attraction for the

controllers. The red diamond shows the estimated region of attraction of the DT

controller, which is only computed at the Poincaré section characterized by θ = 0.

55

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3
θ [rad]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

|θ̇
−

θ̇⋆
|[
ra
d
/s
]

ǫROA

Region of Attraction Estimation by sum-of-squares programming

Continuous control

Discrete control

Figure 4.4: Regions of attraction of the DT and CT controllers
εROA = 1.038 [rad/s]

The region of attraction of the CT controller is given for various Poincaré sections,

−α ≤ θ ≤ α. We observe that on the section θ = 0, the region of attraction of the

CT controller is greater than that of the DT controller by an amount εROA = 1.038

[rad/s]. We also observe that the optimization results correctly predicts that the

region of attraction vanishes for the region θ ≥ 0.05 [rad]. In words, it is predicting

that if the system is started with a wheel velocity that is too great in the opposite

direction, the robot will stumble and fall back on its swing foot.

4.4 Experimental Studies

In a collaboration with Professor Bhounsule [34] and his team, we describe the

hardware implementation of the rimless wheel with torso and provide experimental

56

Figure 4.5: Experimental prototype

results that support the theory developed earlier.

4.4.1 Prototype

Figure 4.5 shows the experimental prototype. It consists of two rimless wheels,

each with 10 spokes, attached side-to-side through a torso that houses all the elec-

tronics, motors, and batteries. The spokes and the torso are 3D printed using a

hobby-grade printer (Makerbot Replicator). Each spoke of the wheel has an inline

compression spring to cushion the collision. Each rimless wheel is connected to an

outrunner motor (Turnigy Aerodrive SK3 5055-280 KV, Hobbyking, Hong Kong)

through a belt system. Each motor has a capacitive encoder (AMT102 8192 counts

per revolution, CUI Inc.,Tualatin, OR, USA) and controlled by an Odrive v3.5 motor

57

1 2 3 4 5 6 7 8 9 10 11

An
gu

la
r v

el
oc

ity
 (r

ad
/s

)

2

2.5

3

3.5

4

4.5

5

5.5 Measured
Reference

Time (s)
1 2 3 4 5 6 7 8 9 10 11

To
rs

o
An

gl
e

(ra
d)

0.65

0.7

0.75

0.8

0.85

0.9

0.95 Measured
Commanded

Robot pushed

Robot pushed

Speed stabilized

Figure 4.6: Experimental results

controller (Odrive, CA, USA). The Odrive is connected to a Raspberry Pi 3B (Rasp-

berry Pi foundation, UK). In addition, the torso is connected to a 9-axis inertial

measurement unit (Adafruit, NY, USA). The motors are powered by a Turnigy

3000mAh 6S 30C Lipo Pack w/XT-60 and the electronics and computers are powered

by Turnigy 1300mAh 6S 35C Lipo Pack.

4.4.2 Results

We implemented the continuous-time controller on the hardware with constant k

gain. We chose a nominal torso angle of ϕ0 = 0.873 [rad] (50◦). This corresponds

to a nominal linear hip speed of 0.8[ms] or an angular speed of θ̇? = 3.25[ms] at

θ = 0. Figure 4.6 (a) shows the angular velocity of the stance leg (θ̇), and (b) shows

58

torso angle (ϕ), both as a function of time. The robot is manually pushed at t = 4

sec, thus increasing its mid-stance speed to 5 rad/s. The controller compensates by

reducing the torso angle. It takes the controller about 7 seconds or about 50 steps

to get the system back to the nominal limit cycle, The slow response is because the

proportional-integral-derivative controller for the torso is conservatively tuned and

takes appreciable time to change the set-point.

4.5 Conclusion

This chapter presents a family of controllers for robustly stabilizing walking gaits

of a rimless wheel with torso on various ground slopes. These controllers are derived

by asymptotically stabilizing the transverse dynamics of the reduced system along

a nominal limit cycle, judiciously selected to minimize the energy loss at impacts.

Several other sensible choices for the nominal limit cycles exist, such as one for

which the pre-impact and post-impact angular velocity of the torso coincide, etc. We

then support the theoretical development by numerical simulations and an eventual

implementation on hardware.

59

CHAPTER 5

CONCLUSIONS

This thesis explores the problem of design optimization for robotic manipulators

subject to multiple performance metrics using convex optimization techniques. We

have designed and validated two types of feedback controllers that stabilize selected

gaits of a walking robot through a methodology that scales well to robots with higher

degrees of freedom.

For the design optimization problem, we are able to efficiently find the geometric

parameters for the two-link serial manipulator that are globally-optimal in terms of

kinematic and dynamic isotropy. One of the remaining challenges is to formulate the

constraints so that the framework can be used with parallel manipulators, for which

the loop equations must be satisfied. Furthermore, this framework readily allows for

the determination of inner and outer approximations to the singularity-free workspace

of robotic manipulators. These two tasks will be pursued in future work.

For the work concerning orbital stabilization of the rimless wheel with torso, we

show theoretically and through extensive simulation results that the control policies

are able to stabilize the full dynamics of the system. In the future, we intend to add

to the experimental results that we have presented in Chapter 4.

60

REFERENCES

[1] S. Collins, A. Ruina, R. Tedrake, and M. Wisse, “Efficient bipedal robots based
on passive-dynamic walkers,” Science, vol. 307, no. 5712, pp. 1082–1085, 2005.

[2] R. Unal, G. Kiziltas, and V. Patoglu, “A multi-criteria design optimization
framework for haptic interfaces,” in 2008 Symposium on Haptic Interfaces for
Virtual Environment and Teleoperator Systems, 2008, pp. 231–238.

[3] M. A. Ergin, A. C. Satici, and V. Patoglu, “Design optimization, impedance con-
trol and characterization of a modified delta robot,” in 2011 IEEE International
Conference on Mechatronics (ICM). IEEE, 2011, pp. 737–742.

[4] L. Stocco, S. E. Salcudean, and F. Sassani, “Fast constrained global minimax
optimization of robot parameters,” Robotica 16(6), pp. 595–605, 1998.

[5] J. W. Yoon, J. Ryu, and Y.-K. Hwang, “Optimum design of 6-dof parallel manip-
ulator with translational/rotational workspaces for haptic device application,”
Journal of mechanical science and technology, vol. 24, no. 5, pp. 1151–1162,
2010.

[6] S.-D. Stan, V. Maties, R. Balan, C. Rusu, and S. Besoiu, “Optimal link design
of a six degree of freedom micro parallel robot based on workspace analysis,” in
2008 10th IEEE International Workshop on Advanced Motion Control. IEEE,
2008, pp. 637–642.

[7] S.-U. Lee and S. Kim, “Analysis and optimal design of a new 6 dof parallel
type haptic device,” in 2006 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, 2006, pp. 460–465.

[8] Y. Hou and Y. Zhao, “Workspace analysis and optimization of 3-puu parallel
mechanism in medicine base on genetic algorithm,” The open biomedical engi-
neering journal, vol. 9, p. 214, 2015.

[9] M. H. Saadatzi, M. T. Masouleh, H. D. Taghirad, C. Gosselin, and P. Cardou,
“On the optimum design of 3-rpr parallel mechanisms,” in 2011 19th Iranian
Conference on Electrical Engineering. IEEE, 2011, pp. 1–6.

61

[10] X.-J. Liu and J. Wang, “A new methodology for optimal kinematic design of
parallel mechanisms,” Mechanism and machine theory, vol. 42, no. 9, pp. 1210–
1224, 2007.

[11] X.-J. Liu, J. Wang, and H.-J. Zheng, “Optimum design of the 5r symmetrical
parallel manipulator with a surrounded and good-condition workspace,” Robotics
and Autonomous Systems, vol. 54, no. 3, pp. 221–233, 2006.

[12] Y. Lou, G. Liu, and Z. Li, “Randomized optimal design of parallel manipulators,”
IEEE Transactions on Automation Science and Engineering, vol. 5, no. 2, pp.
223–233, 2008.

[13] R. E. Stamper, L.-W. Tsai, and G. C. Walsh, “Optimization of a three dof
translational platform for well-conditioned workspace,” in Proceedings 1997
IEEE International Conference on Robotics and Automation, vol. 4. IEEE,
1997, pp. 3250–3255.

[14] H.-p. LIN and S.-q. HOU, “Optimization analysis of workspace for the 3-puu
parallel machine tool based on monte carlo method,” Modular Machine Tool &
Automatic Manufacturing Technique, vol. 9, p. 024, 2009.

[15] Y. Lou, G. Liu, J. Xu, and Z. Li, “A general approach for optimal kinematic
design of parallel manipulators,” in Proceedings 2004 IEEE International Con-
ference on Robotics and Automation, vol. 4. IEEE, 2004, pp. 3659–3664.

[16] M. A. Mousavi, M. T. Masouleh, and A. Karimi, “On the maximal singularity-
free ellipse of planar 3-rpr parallel mechanisms via convex optimization,” Robotics
and Computer-Integrated Manufacturing, vol. 30, no. 2, pp. 218–227, 2014.

[17] V. Hayward, J. Choksi, G. Lanvin, and C. Ramstein, “Design and multi-objective
optimization of a linkage for a haptic interface,” in Advances in robot kinematics
and computational geometry. Springer, 1994, pp. 359–368.

[18] G. Alıcı and B. Shirinzadeh, “Optimum synthesis of planar parallel manipulators
based on kinematic isotropy and force balancing,” Robotica, vol. 22, no. 1, pp.
97–108, 2004.

[19] M. Krefft and J. Hesselbach, “Elastodynamic optimization of parallel kinemat-
ics,” in IEEE International Conference on Automation Science and Engineering,
2005. IEEE, 2005, pp. 357–362.

[20] A. Frisoli, M. Prisco, F. Salsedo, and M. Bergamasco, “A two degrees-of-freedom
planar haptic interface with high kinematic isotropy,” in 8th IEEE International
Workshop on Robot and Human Interaction. RO-MAN’99 (Cat. No. 99TH8483).
IEEE, 1999, pp. 297–302.

62

[21] W. Chen, Q. Zhang, Z. Zhao, and W. Gruver, “Optimizing multiple performance
criteria in redundant manipulators by subtask-priority control,” in 1995 IEEE
International Conference on Systems, Man and Cybernetics. Intelligent Systems
for the 21st Century., vol. 3. IEEE, 1995, pp. 2534–2539.

[22] S. McGhee, T. F. Chan, R. V. Dubey, and R. L. Kress, “Probability-based
weighting of performance criteria for a redundant manipulator,” in 1994 IEEE
International Conference on Robotics and Automation. IEEE, 1994, pp. 1887–
1894.

[23] J. H. Lee, K. S. Eom, and I. I. Suh, “Design of a new 6-dof parallel haptic device,”
in Proceedings 2001 IEEE International Conference on Robotics and Automation
(ICRA), vol. 1. IEEE, 2001, pp. 886–891.

[24] J. Yoon and J. Ryu, “Design, fabrication, and evaluation of a new haptic device
using a parallel mechanism,” IEEE/ASME Transactions on mechatronics, vol. 6,
no. 3, pp. 221–233, 2001.

[25] G. Blekherman, P. A. Parrilo, and R. R. Thomas, Semidefinite optimization and
convex algebraic geometry. SIAM, 2012.

[26] W. Sirichotiyakul, V. Patoglu, and A. C. Satici, “Convex multi-criteria design
optimization of robotic manipulators via sum-of-squares programming,” in 3rd
IEEE International Conference on Robotic Computing, IRC. IEEE, 2019, pp.
439–440.

[27] T. McGeer, “Passive dynamic walking,” The International Journal of Robotics
Research, vol. 9, no. 2, pp. 62–82, 1990.

[28] A. Chatterjee and M. Garcia, “Small slope implies low speed for mcgeer’s passive
walking machines,” Dynamics and Stability of Systems, vol. 15, no. 2, pp. 139–
157, 2000.

[29] M. Gomes and A. Ruina, “Walking model with no energy cost,” Physical Review
E, vol. 83, no. 3, p. 032901, 2011.

[30] J. B. Jeans and D. Hong, “Impass: Intelligent mobility platform with active spoke
system,” in 2009 IEEE International Conference on Robotics and Automation.
IEEE, 2009, pp. 1605–1606.

[31] F. Asano and J. Kawamoto, “Passive dynamic walking of viscoelastic-legged rim-
less wheel,” in 2012 IEEE International Conference on Robotics and Automation.
IEEE, 2012, pp. 2331–2336.

63

[32] F. Asano, T. Sogawa, K. Tamura, and Y. Akutsu, “Passive dynamic walking
of rimless wheel with 2-dof wobbling mass,” in 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, 2013, pp. 3120–3125.

[33] F. Asano and X. Xiao, “Output deadbeat control approaches to fast convergent
gait generation of underactuated spoked walker,” in 2012 IEEE/SICE Interna-
tional Symposium on System Integration (SII). IEEE, 2012, pp. 265–270.

[34] P. A. Bhounsule, E. Ameperosa, S. Miller, K. Seay, and R. Ulep, “Dead-beat
control of walking for a torso-actuated rimless wheel using an event-based,
discrete, linear controller,” in Proc. 40th mechanisms and robotics conference.
ASME, 2016.

[35] T. A. Henzinger, “The theory of hybrid automata,” in Verification of Digital and
Hybrid Systems. Springer, 2000, pp. 265–292.

[36] R. Goebel, J. Hespanha, A. R. Teel, C. Cai, and R. Sanfelice, “Hybrid systems:
generalized solutions and robust stability,” in Proc. 6th IFAC symposium in
nonlinear control systems. Citeseer, 2004, pp. 1–12.

[37] I. R. Manchester, “Transverse dynamics and regions of stability for nonlinear
hybrid limit cycles,” arXiv preprint arXiv:1010.2241, 2010.

[38] G. A. Leonov, “Generalization of the andronov-vitt theorem,” Regular and
chaotic dynamics, vol. 11, no. 2, pp. 281–289, 2006.

[39] A. S. Shiriaev, L. B. Freidovich, and I. R. Manchester, “Can we make a
robot ballerina perform a pirouette? orbital stabilization of periodic motions of
underactuated mechanical systems,” Annual Reviews in Control, vol. 32, no. 2,
pp. 200–211, 2008.

[40] A. Prestel and C. Delzell, Positive polynomials: from Hilberts 17th problem to
real algebra. Springer Science & Business Media, 2013.

[41] D. Henrion and A. Garulli, Positive polynomials in control. Springer Science &
Business Media, 2005, vol. 312.

[42] P. A. Parrilo, “Structured semidefinite programs and semialgebraic geometry
methods in robustness and optimization,” Ph.D. dissertation, California Institute
of Technology, 2000.

[43] M.-D. Choi, T. Y. Lam, and B. Reznick, “Sums of squares of real polynomials,” in
Proceedings of Symposia in Pure mathematics, vol. 58. American Mathematical
Society, 1995, pp. 103–126.

64

[44] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear matrix inequalities
in system and control theory. Siam, 1994, vol. 15.

[45] I. Dunning, J. Huchette, and M. Lubin, “Jump: A modeling language for
mathematical optimization,” SIAM Review, vol. 59, no. 2, pp. 295–320, 2017.

[46] L. Perko, Differential Equations and Dynamical Systems. Springer Science &
Business Media, 2013, vol. 7.

[47] S. Strogatz, M. Friedman, A. J. Mallinckrodt, and S. McKay, “Nonlinear dynam-
ics and chaos: with applications to physics, biology, chemistry, and engineering,”
Computers in Physics, vol. 8, no. 5, pp. 532–532, 1994.

[48] S. Sastry, Nonlinear systems: analysis, stability, and control. Springer Science
& Business Media, 2013, vol. 10.

[49] J. Hauser and C. C. Chung, “Converse lyapunov functions for exponentially
stable periodic orbits,” Systems & Control Letters, vol. 23, no. 1, pp. 27–34,
1994.

[50] R. Tedrake, “Underactuated robotics: Algorithms for walking, running,
swimming, flying, and manipulation,” Course Notes for MIT 6.832, August
2018. [Online]. Available: http://underactuated.mit.edu

[51] H. Khalil, Nonlinear Systems, ser. Pearson Education. Prentice Hall, 2002.

[52] J. K. Salisbury and J. Craig, “Articulated hands: Force control and kinematic
issues,” The International Journal of Robotics Research, vol. 1(1), pp. 4–17, 1982.

[53] M. W. Spong, S. Hutchinson, M. Vidyasagar, et al., Robot modeling and control.
Wiley New York, 2006, vol. 3.

[54] E. de Klerk, Aspects of Semidefinite Programming: Interior Point Algorithms
and Selected Applications, ser. Applied Optimization. Springer US, 2006.

[55] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university
press, 2004.

[56] E. R. Westervelt, C. Chevallereau, J. H. Choi, B. Morris, and J. W. Grizzle,
Feedback control of dynamic bipedal robot locomotion. CRC press, 2007.

[57] A. S. Shiriaev and L. B. Freidovich, “Transverse linearization for impulsive
mechanical systems with one passive link,” IEEE Transactions on Automatic
Control, vol. 54, no. 12, pp. 2882–2888, 2009.

65

[58] M. W. Spong, “Partial feedback linearization of underactuated mechanical sys-
tems,” in International Conference on Intelligent Robots and Systems (IROS),
vol. 1. IEEE, 1994, pp. 314–321.

[59] W. Tan, A. Packard, et al., “Stability region analysis using polynomial and
composite polynomial lyapunov functions and sum-of-squares programming,”
IEEE Transactions on Automatic Control, vol. 53, no. 2, p. 565, 2008.

