62 research outputs found

    SEM-POS: Grammatically and Semantically Correct Video Captioning

    Full text link
    Generating grammatically and semantically correct captions in video captioning is a challenging task. The captions generated from the existing methods are either word-by-word that do not align with grammatical structure or miss key information from the input videos. To address these issues, we introduce a novel global-local fusion network, with a Global-Local Fusion Block (GLFB) that encodes and fuses features from different parts of speech (POS) components with visual-spatial features. We use novel combinations of different POS components - 'determinant + subject', 'auxiliary verb', 'verb', and 'determinant + object' for supervision of the POS blocks - Det + Subject, Aux Verb, Verb, and Det + Object respectively. The novel global-local fusion network together with POS blocks helps align the visual features with language description to generate grammatically and semantically correct captions. Extensive qualitative and quantitative experiments on benchmark MSVD and MSRVTT datasets demonstrate that the proposed approach generates more grammatically and semantically correct captions compared to the existing methods, achieving the new state-of-the-art. Ablations on the POS blocks and the GLFB demonstrate the impact of the contributions on the proposed method

    Non-Autoregressive Coarse-to-Fine Video Captioning

    Full text link
    It is encouraged to see that progress has been made to bridge videos and natural language. However, mainstream video captioning methods suffer from slow inference speed due to the sequential manner of autoregressive decoding, and prefer generating generic descriptions due to the insufficient training of visual words (e.g., nouns and verbs) and inadequate decoding paradigm. In this paper, we propose a non-autoregressive decoding based model with a coarse-to-fine captioning procedure to alleviate these defects. In implementations, we employ a bi-directional self-attention based network as our language model for achieving inference speedup, based on which we decompose the captioning procedure into two stages, where the model has different focuses. Specifically, given that visual words determine the semantic correctness of captions, we design a mechanism of generating visual words to not only promote the training of scene-related words but also capture relevant details from videos to construct a coarse-grained sentence "template". Thereafter, we devise dedicated decoding algorithms that fill in the "template" with suitable words and modify inappropriate phrasing via iterative refinement to obtain a fine-grained description. Extensive experiments on two mainstream video captioning benchmarks, i.e., MSVD and MSR-VTT, demonstrate that our approach achieves state-of-the-art performance, generates diverse descriptions, and obtains high inference efficiency. Our code is available at https://github.com/yangbang18/Non-Autoregressive-Video-Captioning.Comment: 9 pages, 6 figures, to be published in AAAI2021. Our code is available at https://github.com/yangbang18/Non-Autoregressive-Video-Captionin
    • …
    corecore